Skip to main content
Log in

Tunneling dynamics and transport in MBE-grown GaAs/AlGaAs asymmetric double quantum wells investigated via photoluminescence and terahertz time-domain spectroscopy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We study the transport of photogenerated carriers in molecular beam epitaxy (MBE)-grown gallium arsenide/aluminum gallium arsenide (GaAs/AlGaAs) coupled (CDQW) and uncoupled (UDQW) double quantum wells. Photoluminescence (PL) spectroscopy was used to investigate the optical properties and establish differences in the tunneling properties between the CDQW and UDQW. Terahertz time-domain spectroscopy (THz-TDS) measurements have shown that the emissions from the CDQW and UDQW were \(57 \%\) and \(31\%\) of the THz emission of p-InAs, \({800}{\mathrm{nm}}\) excitation wavelength. The higher THz emission from the CDQW is attributed to the tunneling of electrons from the NW to the WW leading to a larger dipole moment. Furthermore, excitation wavelength-dependent THz-TDS measurements have shown that when the NW is not photoexcited, high-frequency components appear in the frequency spectra. These results provide insights on the possible development of DQWs as THz optoelectronic devices. It also demonstrates the application of THz-TDS in investigating tunneling dynamics in DQWs in conjunction with established optical characterization techniques, such as PL spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data supporting the study are available from the authors upon reasonable request.

References

  1. T. Aggerstam, S. Lourdudoss, H.H. Radamson, M. Sjödin, P. Lorenzini, D.C. Look, Investigation of the interface properties of movpe grown algan/gan high electron mobility transistor (hemt) structures on sapphire. Thin Solid Films 515(2), 705–707 (2006)

    Article  CAS  Google Scholar 

  2. T. Nanjo, A. Imai, Y. Suzuki, Y. Abe, T. Oishi, M. Suita, E. Yagyu, Y. Tokuda, Algan channel hemt with extremely high breakdown voltage. IEEE Trans. Electron Devices 60(3), 1046–1053 (2013)

    Article  CAS  Google Scholar 

  3. K. Kosiel, J. Kubacka-Traczyk, P. Karbownik, A. Szerling, J. Muszalski, M. Bugajski, P. Romanowski, J. Gaca, M. Wójcik, Molecular-beam epitaxy growth and characterization of mid-infrared quantum cascade laser structures. Microelectron. J. 40(3), 565–569 (2009)

    Article  CAS  Google Scholar 

  4. S. Gupta, P.K. Bhattacharya, J. Pamulapati, G. Mourou, Optical properties of high-quality ingaas/inalas multiple quantum wells. J. Appl. Phys. 69(5), 3219–3225 (1991)

    Article  CAS  Google Scholar 

  5. S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams et al., The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 50(4), 043001 (2017)

    Article  CAS  Google Scholar 

  6. G.P. Williams, Filling the thz gap-high power sources and applications. Rep. Prog. Phys. 69(2), 301 (2005)

    Article  Google Scholar 

  7. P.F. Taday, Applications of terahertz spectroscopy to pharmaceutical sciences. Philos. Trans. Royal Soc. London Series Mathem. Physi. Eng. Sci. 362, 351–364 (2004)

    Article  CAS  Google Scholar 

  8. X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, Y. Luo, Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 34(10), 810–824 (2016)

    Article  CAS  Google Scholar 

  9. L. Yang, T. Guo, X. Zhang, S. Cao, X. Ding, Toxic chemical compound detection by terahertz spectroscopy: a review. Rev. Analy. Chem. 37(3) (2018)

  10. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer et al., Wireless sub-thz communication system with high data rate. Nat. Photonics 7(12), 977 (2013)

    Article  CAS  Google Scholar 

  11. M. Yamashita, K. Kawase, C. Otani, T. Kiwa, M. Tonouchi, Imaging of large-scale integrated circuits using laser terahertz emission microscopy. Opt. Express 13(1), 115–120 (2005)

    Article  Google Scholar 

  12. R. Ulbricht, E. Hendry, J. Shan, T.F. Heinz, M. Bonn, Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83(2), 543 (2011)

    Article  CAS  Google Scholar 

  13. S. Engelbrecht, A. Reichel, R. Kersting, Charge carrier relaxation and effective masses in silicon probed by terahertz spectroscopy. J. Appl. Phys. 112(12), 123704 (2012)

    Article  CAS  Google Scholar 

  14. M.C. Beard, G.M. Turner, C.A. Schmuttenmaer, Terahertz spectroscopy. ACS Publications (2002)

  15. X.-C. Zhang, J. Darrow, B. Hu, D. Auston, M. Schmidt, P. Tham, E. Yang, Optically induced electromagnetic radiation from semiconductor surfaces. Appl. Phys. Lett. 56(22), 2228–2230 (1990)

    Article  CAS  Google Scholar 

  16. X.-C. Zhang, D. Auston, Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics. J. Appl. Phys. 71(1), 326–338 (1992)

    Article  CAS  Google Scholar 

  17. E. Estacio, A. Quema, R. Pobre, G. Diwa, C. Ponseca, S. Ono, H. Murakami, A. Somintac, J. Sy, V. Mag-usara et al., Below-bandgap excited, terahertz emission of optically pumped gaas/algaas multiple quantum wells. J. Photochem. Photobiol. A 183(3), 334–337 (2006)

    Article  CAS  Google Scholar 

  18. I. Morohashi, K. Komori, T. Hidaka, X.-L. Wang, M. Ogura, M. Watanabe, Investigation of ultrafast carrier dynamics in quantum wire by terahertz time-domain spectroscopy. Jpn. J. Appl. Phys. 43(4S), 2125 (2004)

    Article  CAS  Google Scholar 

  19. R.R. Leyman, A. Gorodetsky, N. Bazieva, G. Molis, A. Krotkus, E. Clarke, E.U. Rafailov, Quantum dot materials for terahertz generation applications. Laser Photonics Rev. 10(5), 772–779 (2016)

    Article  CAS  Google Scholar 

  20. D. Ponomarev, A. Gorodetsky, A. Yachmenev, S. Pushkarev, R. Khabibullin, M. Grekhov, K. Zaytsev, D. Khusyainov, A. Buryakov, E. Mishina, Enhanced terahertz emission from strain-induced ingaas/inalas superlattices. J. Appl. Phys. 125(15), 151605 (2019)

    Article  CAS  Google Scholar 

  21. D. Ponomarev, R. Khabibullin, A. Yachmenev, A.Y. Pavlov, D. Slapovskiy, I. Glinskiy, D. Lavrukhin, O. Ruban, P. Maltsev, Electrical and thermal properties of photoconductive antennas based on in x ga 1–x as (x> 0.3) with a metamorphic buffer layer for the generation of terahertz radiation. Semiconductors 51(9), 1218–1223 (2017)

    Article  CAS  Google Scholar 

  22. Y. Peter, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, New York, 2010)

    Google Scholar 

  23. A. Kastalsky, V. Goldman, J. Abeles, Possibility of infrared laser in a resonant tunneling structure. Appl. Phys. Lett. 59(21), 2636–2638 (1991)

    Article  CAS  Google Scholar 

  24. K. Doughty, R. Simes, A. Gossard, J. Maserjian, J. Merz, A tunable quantum well infrared detector based on photon-assisted resonant tunnelling. Semicond. Sci. Technol. 5(6), 494 (1990)

    Article  CAS  Google Scholar 

  25. P. Harrison, A. Valavanis, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (John Wiley & Sons, New York, 2016)

    Book  Google Scholar 

  26. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, vol. 115 (Springer, Berlin, 2013)

    Google Scholar 

  27. M. Asada, S. Suzuki, N. Kishimoto, Resonant tunneling diodes for sub-terahertz and terahertz oscillators. Jpn. J. Appl. Phys. 47(6R), 4375 (2008)

    Article  CAS  Google Scholar 

  28. B.S. Williams, Terahertz quantum-cascade lasers. Nat. Photonics 1(9), 517–525 (2007)

    Article  CAS  Google Scholar 

  29. M. Asada, S. Suzuki, Terahertz emitter using resonant-tunneling diode and applications. Sensors 21(4), 1384 (2021)

    Article  CAS  Google Scholar 

  30. A. Sadao, Properties of group-IV, III-V and II-VI semiconductors, series in materials for electronic and optoelectronic application (John Wiley & Sons Ltd, England, 2005)

    Google Scholar 

  31. D. Leopold, M. Leopold, Tunneling-induced optical nonlinearities in asymmetric al 0.3 ga 0.7 as/gaas double-quantum-well structures. Phys. Rev. B 42(17), 11147 (1990)

    Article  CAS  Google Scholar 

  32. P.-F. Yuh, K. Wang, Intersubband optical absorption in coupled quantum wells under an applied electric field. Phys. Rev. B 38(12), 8377 (1988)

    Article  CAS  Google Scholar 

  33. G. Gilliland, Photoluminescence spectroscopy of crystalline semiconductors. Mater. Sci. Eng. R. Rep. 18(3–6), 99–399 (1997)

    Article  Google Scholar 

  34. Y. Fang, L. Wang, Q. Sun, T. Lu, Z. Deng, Z. Ma, Y. Jiang, H. Jia, W. Wang, J. Zhou et al., Investigation of temperature-dependent photoluminescence in multi-quantum wells. Sci. Rep. 5, 12718 (2015)

    Article  CAS  Google Scholar 

  35. R. Sauer, K. Thonke, W. Tsang, Photoinduced space-charge buildup by asymmetric electron and hole tunneling in coupled quantum wells. Phys. Rev. Lett. 61(5), 609 (1988)

    Article  CAS  Google Scholar 

  36. Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34(1), 149–154 (1967)

    Article  CAS  Google Scholar 

  37. J.L. Duarte, L.C. Poças, E. Laureto, I.F.L. Dias, É.M. Lopes, S.A. Lourenço, J. Harmand, Competition between confinement potential fluctuations and band-gap renormalization effects in in 0.53 ga 047 as/in 052.5 ga 0235 al 025 as single and double quantum wells. Phys. Rev. B 77(16), 165322 (2008)

    Article  CAS  Google Scholar 

  38. V.L. Malevich, R. Adomavičius, A. Krotkus, The emission from semiconductor surfaces. C R Phys. 9(2), 130–141 (2008)

    Article  CAS  Google Scholar 

  39. H.G. Roskos, M.C. Nuss, J. Shah, K. Leo, D.A. Miller, A.M. Fox, S. Schmitt-Rink, K. Köhler, Coherent submillimeter-wave emission from charge oscillations in a double-well potential. Phys. Rev. Lett. 68(14), 2216 (1992)

    Article  CAS  Google Scholar 

  40. R. Bratschitsch, T. Müller, R. Kersting, G. Strasser, K. Unterrainer, Coherent terahertz emission from optically pumped intersubband plasmons in parabolic quantum wells. Appl. Phys. Lett. 76(24), 3501–3503 (2000)

    Article  CAS  Google Scholar 

  41. L. Bell, J. Rogers, J. Heyman, J. Zimmerman, A. Gossard, Terahertz emission by quantum beating in a modulation doped parabolic quantum well. Appl. Phys. Lett. 92(14), 142108 (2008)

    Article  CAS  Google Scholar 

  42. M. Runge, T. Kang, K. Biermann, K. Reimann, M. Woerner, T. Elsaesser, Mono-cycle terahertz pulses from intersubband shift currents in asymmetric semiconductor quantum wells. Optica 8(12), 1638–1641 (2021)

    Article  Google Scholar 

  43. K. Chau, A. Elezzabi, Two-dimensional drift-diffusion analysis of magnetic field enhanced thz emission from semiconductor surfaces. Opt. Commn. 242(1–3), 295–304 (2004)

    Article  CAS  Google Scholar 

  44. K. Sakai, Terahertz Optoelectronics, vol. 6 (Springer, Berlin, 2005)

    Book  Google Scholar 

  45. H. Takahashi, A. Quema, R. Yoshioka, S. Ono, N. Sarukura, Excitation fluence dependence of terahertz radiation mechanism from femtosecond-laser-irradiated inas under magnetic field. Appl. Phys. Lett. 83(6), 1068–1070 (2003)

    Article  CAS  Google Scholar 

  46. M. Migita, M. Hangyo, Pump-power dependence of thz radiation from inas surfaces under magnetic fields excited by ultrashort laser pulses. Appl. Phys. Lett. 79(21), 3437–3439 (2001)

    Article  CAS  Google Scholar 

  47. M. Reznikov, V. Talyansky, Electronic transport properties of p-inas cleaved surfaces. vol. 23, pp. 157–158. Elsevier (1985)

  48. T. Dekorsy, H. Auer, C. Waschke, H.J. Bakker, H.G. Roskos, H. Kurz, V. Wagner, P. Grosse, Emission of submillimeter electromagnetic waves by coherent phonons. Phys. Rev. Lett. 74(5), 738 (1995)

    Article  CAS  Google Scholar 

  49. P. Gu, M. Tani, S. Kono, K. Sakai, X.-C. Zhang, Study of terahertz radiation from inas and insb. J. Appl. Phys. 91(9), 5533–5537 (2002)

    Article  CAS  Google Scholar 

  50. K. Liu, J. Xu, T. Yuan, X.-C. Zhang, Terahertz radiation from inas induced by carrier diffusion and drift. Phys. Rev. B 73(15), 155330 (2006)

    Article  CAS  Google Scholar 

  51. S.L. Chuang, S.L. Chuang, Physics of optoelectronic devices (1995)

  52. M. Nakajima, M. Takahashi, M. Hangyo, Strong enhancement of the radiation intensity from semi-insulating gaas surfaces at high temperatures. Appl. Phys. Lett. 81(8), 1462–1464 (2002)

    Article  CAS  Google Scholar 

  53. F. Capasso, K. Mohammed, A.Y. Cho, R. Hull, A.L. Hutchinson, Effective mass filtering: Giant quantum amplification of the photocurrent in a semiconductor superlattice. Appl. Phys. Lett. 47(4), 420–422 (1985)

    Article  CAS  Google Scholar 

  54. C. Song, P. Wang, Y. Qian, G. Zhou, R. Nötzel, Enhanced terahertz radiation from inas (100) with an embedded ingaas hole blocking layer. Opt. Express 28(18), 25750–25756 (2020)

    Article  CAS  Google Scholar 

  55. J. John Ibanes, M. Herminia Balgos, R. Jaculbia, A. Salvador, A. Somintac, E. Estacio, C.T. Que, S. Tsuzuki, K. Yamamoto, M. Tani, Terahertz emission from gaas-algaas core-shell nanowires on si (100) substrate: effects of applied magnetic field and excitation wavelength. Appl. Phys. Lett. 102(6), 063101 (2013)

    Article  CAS  Google Scholar 

  56. M. Hui-bing, S. Xue-chu, X. Zhong-ying, Recombination dynamics in asymmetric coupled quantum well structures. Acta Physica Sinica (Overseas Edition) 6(3), 223 (1997)

    Article  Google Scholar 

  57. R. Jaculbia, J. Afalla, M. Balgos, K. Omambac, D. Lumantas, A. Salvador, E. Estacio, A. Somintac, Tunneling at room temperature in gaas/algaas asymmetric coupled double quantum wells observed via time resolved photoluminescence spectroscopy. Superlattices Microstruct. 109, 324–329 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the University of the Philippines Natural Sciences Research Institute Research Grant entitled “MBE thin film growth of RTD heterostructures” (Project Code: MSE-20-1-02).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ADLR, EAP, LD, and EE. Methodology: ADLR, NIC, MATQ, HB, and AS. Data analysis: ADLR, EAP, LD, and EE. Manuscript preparation: ADLR, EAP, LD, HB, MATQ, NIC, AS, AS, and EE. Supervision: EP, LD, AS, AS, and EE. Funding: ADLR, EAP, and LD.

Corresponding author

Correspondence to Alexander De Los Reyes.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Los Reyes, A., Prieto, E.A., Dasallas, L. et al. Tunneling dynamics and transport in MBE-grown GaAs/AlGaAs asymmetric double quantum wells investigated via photoluminescence and terahertz time-domain spectroscopy. J Mater Sci: Mater Electron 33, 16126–16135 (2022). https://doi.org/10.1007/s10854-022-08503-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08503-3

Navigation