Skip to main content
Log in

Structure and luminescent properties of Mn4+-activated Li2Mg2TiO5 with broadband deep-red emission

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we report a new series of non-rare-earth red phosphors, i.e., Mn4+-activated Li2Mg2TiO5 phosphors prepared by conventional solid-phase reaction. The diffuse reflectance spectroscopy, the photoluminescence (PL) properties both in steady and transient states, and the crystal structural analyses based on experimental data and theoretical equations are performed. These phosphors show intense broadband deep-red emission under blue light excitation. The optimal Mn4+ concentration is found to be 0.1 mol%, with which the phosphor exhibits photoluminescence quantum yield of 50.4% excited at 460 nm blue light. The dominant mechanism for PL concentration quenching in Mn4+-activated Li2Mg2TiO5 system is confirmed to occur via dipole–dipole interaction. The thermal quenching effect of Li2Mg2TiO5:Mn4+ is measured by temperature dependent fluorescence. The emission intensity drops to 50% at 125 °C and the activation energy ΔE is 0.310 eV. As a proof of concept, by incorporating Li2Mg2TiO5:Mn4+ and commercial YAG:Ce3+ into the package of a blue LED chip, a warm white light is achieved with color rendering index of 78.4 and correlated color temperature of 6346 K, demonstrating its usefulness as color converter in the field of warm WLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Pimputkar, J.S. Speck, S.P. DenBaars, S. Nakamura, Prospects for LED lighting. Nat. Photonics. 3, 179–181 (2009). https://doi.org/10.1038/nphoton.2009.32

    Article  CAS  Google Scholar 

  2. H.A. Hoeppe, Recent developments in the field of inorganic phosphors. Angew. Chem. Int. Ed. 48, 3572–3582 (2009). https://doi.org/10.1002/anie.200804005

    Article  CAS  Google Scholar 

  3. S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater. Sci. Eng. R Rep. 71, 1–34 (2010). https://doi.org/10.1016/j.mser.2010.07.001

    Article  CAS  Google Scholar 

  4. C.C. Lin, R.-S. Liu, Advances in phosphors for light-emitting diodes. J. Phys. Chem. Lett. 2, 1268–1277 (2011). https://doi.org/10.1021/jz2002452.10.1016/s0921-5107(98)00352-3

    Article  CAS  Google Scholar 

  5. P. Schlotter, J. Baur, C. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, J. Schneider, Fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs. Mater. Sci. Eng. B. 59, 390–394 (1999). https://doi.org/10.1016/s0921-5107(98)00352-3

    Article  Google Scholar 

  6. N.C. George, K.A. Denault, R. Seshadri, Phosphors for solid-state white lighting, in: D.R. Clarke (Ed.), Annu. Rev. Mater. Res. 43, 481–501 (2013). https://doi.org/10.1146/annurev-matsci-073012-125702

  7. Y. Zhou, D. Chen, W. Tian, Z. Ji, Impact of Eu3+ dopants on optical spectroscopy of Ce3+:Y3Al5O12-embedded transparent glass-ceramics. J. Am. Ceram. Soc. 98, 2445–2450 (2015). https://doi.org/10.1111/jace.13668

    Article  CAS  Google Scholar 

  8. Q. Peng, R. Cao, Y. Ye, S. Guo, Z. Hu, T. Chen, G. Zheng, Photoluminescence properties of broadband deep-red-emitting Na2MgAl10O17:Mn4+ phosphor. J. Alloys Compd. 725, 139–144 (2017). https://doi.org/10.1016/j.jallcom.2017.07.077

    Article  CAS  Google Scholar 

  9. X. Piao, K.-I. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, N. Kijima, Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties. Chem. Mater. 19, 4592–4599 (2007). https://doi.org/10.1021/cm070623c

    Article  CAS  Google Scholar 

  10. G. Blasse, A. Bril, A new phosphor for flying-spot cathode-ray tubes for color television: yellow-emitting Y3Al5O12-Ce3+. Appl. Phys. Lett. 11, 53–55 (1967). https://doi.org/10.1063/1.1755025

    Article  CAS  Google Scholar 

  11. S. Adachi, Review-Mn4+-activated red and deep red-emitting phosphors. ECS J. Solid State Sci. Technol. 9, 016001 (2020). https://doi.org/10.1149/2.0022001JSS

    Article  CAS  Google Scholar 

  12. M.H. Du, Chemical trends of Mn4+ emission in solids. J. Mater. Chem. C 2, 2475–2481 (2014). https://doi.org/10.1039/c4tc00031e

    Article  CAS  Google Scholar 

  13. S. Okamoto, H. Yamamoto, Luminescent-efficiency improvement by alkaline-earth fluorides partially replacing MgO in 3.5MgO⋅0.5MgF2⋅GeO2:Mn4+ deep-red phosphors for light emitting diodes. J. Electrochem. Soc. 157, J59 (2010). https://doi.org/10.1149/1.3276089

    Article  CAS  Google Scholar 

  14. T. Takahashi, S. Adachi, Mn4+-activated red photoluminescence in K2SiF6 phosphor. J. Electrochem. Soc. 155, E183–E188 (2008). https://doi.org/10.1149/1.2993159

    Article  CAS  Google Scholar 

  15. L. Lv, Z. Chen, G. Liu, S. Huang, Y. Pan, Optimized photoluminescence of red phosphor K2TiF6:Mn4+ synthesized at room temperature and its formation mechanism. J. Mater. Chem. C 3, 1935–1941 (2015). https://doi.org/10.1039/c4tc02097a

    Article  CAS  Google Scholar 

  16. Y.M. Liu, T.M. Wang, X.Z. Zhang, C.C. Cao, L. Yang, Y.H. Huang, S. Liao, H.X. Zhang, Synthesis, luminescence properties and nephelauxetic effect of nano stick phosphors K3AlF6:Mn4+ for warm white LED. J. Mater. Sci. Mater. Electron. 30, 1870–1877 (2019). https://doi.org/10.1007/s10854-018-0459-1

    Article  CAS  Google Scholar 

  17. D. Sekiguchi, J.-I. Nara, S. Adachi, Photoluminescence and Raman scattering spectroscopies of BaSiF6:Mn4+ red phosphor. J. Appl. Phys. (2013). https://doi.org/10.1063/1.4803880

    Article  Google Scholar 

  18. L.Y. Wang, E.H. Song, Y.Y. Zhou, T.T. Deng, S. Ye, Q.Y. Zhang, Synthesis and warm-white LED applications of an efficient narrow-band red emitting phosphor, Rb2ZrF6:Mn4+. J. Mater. Chem. C 5, 7253–7261 (2017). https://doi.org/10.1039/c7tc02196h

    Article  CAS  Google Scholar 

  19. X.L. Fan, H. Chen, X.L. Yang, X.M. Duan, A.Q. Sun, B.X. Mi, Z.Q. Gao, Enhancing emission property of red phosphor Sr2MgGe2O7:Mn4+ via Ba2+ doping. J. Mater. Sci. Mater. Electron. 32, 19832–19845 (2021). https://doi.org/10.1007/s10854-021-06507-z

    Article  CAS  Google Scholar 

  20. Z. Lu, A. Fu, F. Gao, X. Zhang, L. Zhou, Synthesis and luminescence properties of double perovskite Ba2MgGe2O7:Mn4+ deep red phosphor. J. Lumin. 203, 420–426 (2018). https://doi.org/10.1016/j.jlumin.2018.06.061

    Article  CAS  Google Scholar 

  21. L. Meng, L. Liang, Y. Wen, Deep red phosphors SrMgAl10O17:Mn4+, M (M = Li+, Na+, K+, Cl) for warm white light emitting diodes. J. Mater. Sci. Mater. Electron. 25, 2676–2681 (2014). https://doi.org/10.1007/s10854-014-1928-9

    Article  CAS  Google Scholar 

  22. Y. He, J. Liu, Y. Gao, L. Yan, F. Lv, F. Liu, L. Long, Enhanced luminescence of Mn4+-activated CaAl12O19 red phosphors by synergetic manipulation of the flux effect and charge compensation for warm WLEDs application. J. Mater. Sci. Mater. Electron. 32, 27513–27523 (2021). https://doi.org/10.1007/s10854-021-07126-4

    Article  CAS  Google Scholar 

  23. J. Stade, D. Hahn, R. Dittmann, New aspects of the luminescence of magnesiumtitanate part II: activation with manganese. J. Lumin. 8, 318–325 (1974). https://doi.org/10.1016/0022-2313(74)90003-9

    Article  CAS  Google Scholar 

  24. P.X. Gao, P. Dong, Z.Y. Zhou, Q. Li, H.H. Li, Z. Zhou, M. Xia, P.H. Zhang, Enhanced luminescence and energy transfer performance of double perovskite structure Gd2MgTiO6:Bi3+, Mn4+ phosphor for indoor plant growth LED lighting. Ceram. Int. 47, 16588–16596 (2021). https://doi.org/10.1016/j.ceramint.2021.02.230

    Article  CAS  Google Scholar 

  25. C. Li, H. Xiang, C. Yin, Y. Tang, Y. Li, L. Fang, Ultra-low loss microwave dielectric ceramic Li2Mg2TiO5 and low-temperature firing via B2O3 addition. J. Electron. Mater. 47, 6383–6389 (2018). https://doi.org/10.1007/s11664-018-6595-9

    Article  CAS  Google Scholar 

  26. J.J. Bian, Y.F. Dong, New high Q microwave dielectric ceramics with rock salt structures: (1-x)Li2TiO3 + xMgO system (0 <= x <= 0.5). J. Eur. Ceram. Soc. 30, 325–330 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.04.030

  27. Y. Jin, Y. Hu, H. Wu, H. Duan, L. Chen, Y. Fu, G. Ju, Z. Mu, M. He, A deep red phosphor Li2MgTiO4:Mn4+ exhibiting abnormal emission: potential application as color converter for warm w-LEDs. Chem. Eng. J. 288, 596–607 (2016). https://doi.org/10.1016/j.cej.2015.12.027

    Article  CAS  Google Scholar 

  28. L. Yuan, Y. Jin, G. Xiong, H. Wu, J. Li, H. Liu, L. Chen, Y. Hu, Flux-assisted low-temperature synthesis of Mn4+-doped unusual broadband deep-red phosphors toward warm w-LEDs. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.159394

    Article  Google Scholar 

  29. B.G. Mikhail, C.-G. Ma, S.M. Alok, P. Michal, Mn4+ ions for solid state lighting. Chin. J. Lumin. 41, 1011–1029 (2020). https://doi.org/10.37188/fgxb20204109.1011

    Article  Google Scholar 

  30. M. Peng, X. Yin, P.A. Tanner, M.G. Brik, P. Li, The site occupancy preference, the enhancement mechanism, and thermal resistance of Mn4+ red luminescence in Sr4Al14O25:Mn4+ for warm WLEDs. Chem. Mater. 27, 2938–2945 (2015). https://doi.org/10.1021/acs.chemmater.5b00226

    Article  CAS  Google Scholar 

  31. A. Boulineau, L. Croguennec, C. Delmas, F. Weill, Reinvestigation of Li2MnO3 structure: electron diffraction and high resolution TEM. Chem. Mater. 21, 4216–4222 (2009). https://doi.org/10.1021/cm900998n

    Article  CAS  Google Scholar 

  32. H. Ji, J. Ueda, M.G. Brik, M.H. Du, D. Chen, S. Tanabe, Intense deep-red zero phonon line emission of Mn4+ in double perovskite La4Ti3O12. Phys. Chem. Chem. Phys. 21, 25108–25117 (2019). https://doi.org/10.1039/c9cp04007b

    Article  CAS  Google Scholar 

  33. S. Adachi, New analysis model for the determination of Racah and crystal-field splitting parameters: verification and case studies. ECS J. Solid State Sci. Technol. (2020). https://doi.org/10.1149/2162-8777/ab8879

    Article  Google Scholar 

  34. M.J. Reisfeld, N.A. Matwiyoff, L.B. Asprey, The electronic spectrum of cesium hexafluoromanganese(IV). J. Mol. Spectrosc. 39, 8–20 (1971). https://doi.org/10.1016/0022-2852(71)90270-0

    Article  CAS  Google Scholar 

  35. B. Henderson, G.F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon Press, Oxford, 1989)

    Google Scholar 

  36. M.G. Brik, A.M. Srivastava, Electronic energy levels of the Mn4+ ion in the perovskite, CaZrO3. ECS J. Solid State Sci. Technol. 2, 148–152 (2013). https://doi.org/10.1149/2.020307jss

    Article  CAS  Google Scholar 

  37. Y. Tanabe, S. Sugano, On the absorption spectra of complex ions II. J. Phys. Soc. Jpn. 9, 766–779 (1954). https://doi.org/10.1143/JPSJ.9.766

    Article  CAS  Google Scholar 

  38. M.G. Brik, S.J. Camardello, A.M. Srivastava, Influence of covalency on the Mn4+ 2Eg4A2g emission energy in crystals. ECS J. Solid State Sci. Technol. 4, 39–43 (2014). https://doi.org/10.1149/2.0031503jss

    Article  CAS  Google Scholar 

  39. P.H.M. Uylings, A.J.J. Raassen, J.F. Wyart, Energies of N equivalent electrons expressed in terms of two-electron energies and independent three-electron parameters: a new complete set of orthogonal operators. II. Application to 3dN configurations. J. Phys. B At. Mol. Phys. 17, 4103–4126 (1984). https://doi.org/10.1088/0022-3700/17/20/010

    Article  CAS  Google Scholar 

  40. G. Blasse, Energy transfer between inequivalent Eu2+ ions. J. Solid State Chem. 62, 207–211 (1986). https://doi.org/10.1016/0022-4596(86)90233-1

    Article  CAS  Google Scholar 

  41. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953). https://doi.org/10.1063/1.1699044

    Article  CAS  Google Scholar 

  42. L.G. Van Uitert, Characterization of energy transfer interactions between rare earth ions. J. Electrochem. Soc. 114, 1048 (1967). https://doi.org/10.1149/1.2424184

    Article  Google Scholar 

  43. S. Bhushan, M.V. Chukichev, Temperature-dependent studies of cathodoluminescence of green band of ZnO crystals. J. Mater. Sci. Lett. 7, 319–321 (1988). https://doi.org/10.1007/bf01730729

    Article  CAS  Google Scholar 

  44. T.N. Ye, S. Li, X.Y. Wu, M. Xu, X. Wei, K.X. Wang, H.L. Bao, J.Q. Wang, J.S. Chen, Sol-gel preparation of efficient red phosphor Mg2TiO4:Mn4+ and XAFS investigation on the substitution of Mn4+ for Ti4+. J. Mater. Chem. C. 1, 4327–4333 (2013). https://doi.org/10.1039/c3tc30553h

    Article  CAS  Google Scholar 

  45. T. Sasaki, J. Fukushima, Y. Hayashi, H. Takizawa, Synthesis and photoluminescence properties of Mn4+-doped BaMg6Ti6O19 phosphor. Chem. Lett. 43, 1061–1063 (2014). https://doi.org/10.1246/cl.140282

    Article  CAS  Google Scholar 

  46. S. Zhang, Y. Hu, H. Duan, Y. Fu, M. He, An efficient, broad-band red-emitting Li2MgTi3O8:Mn4+ phosphor for blue-converted white LEDs. J. Alloys Compd. 693, 315–325 (2017). https://doi.org/10.1016/j.jallcom.2016.09.203

    Article  CAS  Google Scholar 

  47. Y.K. Xu, S. Adachi, Properties of Na2SiF6: Mn4+ and Na2GeF6:Mn4+ red phosphors synthesized by wet chemical etching. J. Appl. Phys. (2009). https://doi.org/10.1063/1.3056375

    Article  Google Scholar 

  48. L.-L. Wei, C.C. Lin, M.-H. Fang, M.G. Brik, S.-F. Hu, H. Jiao, R.-S. Liu, A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M = Ge, Si) for white LED applications. J. Mater. Chem. C 3, 1655–1660 (2015). https://doi.org/10.1039/c4tc02551b

    Article  CAS  Google Scholar 

  49. Y. Zhu, L. Cao, M.G. Brik, X. Zhang, L. Huang, T. Xuan, J. Wang, Facile synthesis, morphology and photoluminescence of a novel red fluoride nanophosphor K2NaAlF6:Mn4+. J. Mater. Chem. C 5, 6420–6426 (2017). https://doi.org/10.1039/c7tc01074e

    Article  CAS  Google Scholar 

  50. A.M. Srivastava, M.G. Brik, S.J. Camardello, H.A. Comanzo, F. Garcia-Santamaria, Optical spectroscopy and crystal field studies of the Mn4+ ion (3d3) in the double perovskite NaLaMgTeO6. Z. Naturforsch. B 69, 141–149 (2014). https://doi.org/10.5560/znb.2014-3259

    Article  CAS  Google Scholar 

  51. Z. Bryknar, V. Trepakov, Z. Potůček, L. Jastrabik, Luminescence spectra of SrTiO3:Mn4+. J. Lumin. 87, 605–607 (2000). https://doi.org/10.1016/S0022-2313(99)00325-7

  52. A.M. Srivastava, M.G. Brik, Ab initio and crystal field studies of the Mn4+-doped Ba2LaNbO6 double-perovskite. J. Lumin. 132, 579–584 (2012). https://doi.org/10.1016/j.jlumin.2011.09.017

    Article  CAS  Google Scholar 

  53. K. Li, H. Lian, R. Van Deun, Site occupancy and photoluminescence properties of a novel deep-redemitting phosphor NaMgGdTeO6:Mn4+ with perovskite structure for w-LEDs. J. Lumin. 198, 155–162 (2018). https://doi.org/10.1016/j.jlumin.2018.02.035

    Article  CAS  Google Scholar 

  54. S. Gu, M. Xia, C. Zhou, Z. Kong, M.S. Molokeev, L. Liu, W.-Y. Wong, Z. Zhou, Red shift properties, crystal field theory and nephelauxetic effect on Mn4+-doped SrMgAl10-yGayO17 red phosphor for plant growth LED light. Chem. Eng. J. 396, 125208 (2020). https://doi.org/10.1016/j.cej.2020.125208

    Article  CAS  Google Scholar 

  55. M.G. Brik, Y.X. Pan, G.K. Liu, Spectroscopic and crystal field analysis of absorption and photoluminescence properties of red phosphor CaAl12O19:Mn4+ modified by MgO. J. Alloys Compd. 509, 1452–1456 (2011). https://doi.org/10.1016/j.jallcom.2010.11.117

    Article  CAS  Google Scholar 

  56. M.G. Brik, A.M. Srivastava, Comparative crystal field analysis of energy level schemes and nephelauxetic effect for Cr4+, Cr3+, and Mn4+ ions in Y2Sn2O7 pyrochlore. Opt. Mater. 35, 1251–1256 (2013). https://doi.org/10.1016/j.optmat.2013.01.033

    Article  CAS  Google Scholar 

  57. Z. Zhou, J. Zheng, R. Shi, N. Zhang, J. Chen, R. Zhang, H. Suo, E.M. Goldys, C. Guo, Ab initio site occupancy and far-red emission of Mn4+ in cubic-phase La(MgTi)1/2O3 for plant cultivation. ACS Appl. Mater. Interfaces 9, 6177–6185 (2017). https://doi.org/10.1021/acsami.6b15866

    Article  CAS  Google Scholar 

  58. A.S. Aleksandrovsky, I.A. Gudim, A.S. Krylov, V.L. Temerov, Luminescence of yttrium aluminum borate single crystals doped with manganese. Phys. Solid State 49, 1695–1699 (2007). https://doi.org/10.1134/s1063783407090156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61474064); the Priority Academic Program Development of Jiangsu Higher Education Institutions in China (PAPD: YX03001, YX03002); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), China; and the Synergetic Innovation Center for Organic Electronics and Information Displays, China.

Author information

Authors and Affiliations

Authors

Contributions

HC: Investigation, Validation, Data curation, Formal analysis, Writing—original draft, Writing—review & editing. AS: Formal analysis, Investigation. DF: Formal analysis, Investigation. SX: Investigation. MZ: Investigation. AW: Investigation. BM: Resources, Writing—review & editing, Supervision. ZG: Methodology, Conceptualization, Resources, Supervision.

Corresponding authors

Correspondence to Baoxiu Mi or Zhiqiang Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Sun, A., Fang, D. et al. Structure and luminescent properties of Mn4+-activated Li2Mg2TiO5 with broadband deep-red emission. J Mater Sci: Mater Electron 33, 15879–15893 (2022). https://doi.org/10.1007/s10854-022-08487-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08487-0

Navigation