Skip to main content
Log in

RETRACTED ARTICLE: Investigation of structural, luminescence, and anti-bacterial properties of novel Zn1−xEuxAl2−yO4Sry phosphor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

This article was retracted on 05 May 2023

This article has been updated

Abstract

In this research work, we synthesized novel zinc aluminate (Zn1−xEuxAl2−yO4Sry) sky bluish phosphors at 500 °C via the combustion route method, and for better crystallinity, we were annealed in condensing envelope with 85% of N2 and 15% of H2 at 1200 °C. The spinel cubic phase, elemental mapping elements, surface morphology, and vibrational properties were observed by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier Transform Infrared), and Raman spectroscopic techniques, respectively. The photoluminescence (PL) spectra were monitored by λex. = 490 nm (excitation wavelength) and λem. = 392 (emission wavelength). Due to Eu2+ ions at 490 nm, intense photoluminescence spectra have been found. The PL efficiency has been found for synthesized Zn0.95Eu0.05Al1.95O4Sr0.05 (ZAS-5) phosphor at around 93.2%. The high Corelated Color Temperature (~ 25,963 K), low color purity (50%), and low Color Rendering Index (~ 44) value were found for the ZAS-5 sample, that result (temperature) is indicating the prepared phosphor is emitting cold sky bluish light which may be useful for a sleeping light lamp, activation of photosynthesis reaction for crops, and background color for the display screen, because it may be a low dangerous color for human eyes. Antibacterial activity of phosphors indicated that combustion derived synthesized all ZAS samples may behave just like as an eco-material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

On behalf of all authors, the corresponding author states that materials described in the manuscript, including all relevant raw data, will be freely available to any researcher wishing to use them for non-commercial purposes, without breaching participant confidentiality. The corresponding author also states that the information on where data supporting the results reported in the article can be found, if applicable. When and where applicable, hyperlinks to publicly archived datasets analyzed or generated during the study.

Change history

References

  1. S.K. Gupta, J.P. Zuniga, P.S. Ghosh, M. Abdou, Y. Mao, Correlating structure and luminescence properties of undoped and Eu3+-doped La2Hf2O7 nanoparticles prepared with different coprecipitating pH values through experimental and theoretical studies. Inorg. Chem. 57(18), 11815–11830 (2018)

    Article  CAS  Google Scholar 

  2. B. Zhang, Q. Liu, W. Yan, Y. Chen, A. Shen, H. Zhang, Relation between structure conversion and spectra-tuning properties of Eu2+-doped strontium aluminate phosphor. J. Mater. Sci. 52, 8188–8199 (2017)

    Article  CAS  Google Scholar 

  3. K. Smick, T. Villette, M. Boulton, G. C. Brainard, W. Jones, P. Karpecki, Ron Melton, R. Thomas, D. H. Sliney, D. Shechtman, Blue light hazard: new knowledge, new approaches to maintaining ocular health NYC, NY 16, 1–12 (2013)

  4. S.K. Pathak, A.K. Verma, A. Verma, I.P. Sahu, Photo and Mechano-luminescence properties of novel Zn1-xEuxAl2-yBayO4 advance blue phosphor. Physica B. 602, 412612 (2020)

    Article  Google Scholar 

  5. Y.C. Lin, M. Karlsson, M. Bettinelli, Inorganic phosphor materials for lighting. Top Curr. Chem. 374, 21 (2016). https://doi.org/10.1007/978-3-319-59304-3_10

    Article  Google Scholar 

  6. J.J. Joos, J. Botterman, P.F. Smet, Evaluating the use of blue phosphors in white LEDs: the case of Sr0.25Ba0.75Si2O2N2:Eu2+. J. Sol State Light 1, 6 (2014)

    Article  Google Scholar 

  7. L. Chen, C.-C. Lin, C.-W. Yeh, R.S. Liu, Light Converting Inorganic Phosphors for White Light-Emitting Diodes. Materials 3(3), 2172–2195 (2010)

    Article  CAS  Google Scholar 

  8. C.N. George, A.K. Denault, R. Seshadri, Phosphors for solid-state white lighting. Annu. Rev. Mater. Res. 43, 481–501 (2013)

    Article  CAS  Google Scholar 

  9. M. Costa, S. Frumento, M. Nese, I. Predier, Interior color and psychological functioning in a university residence hall. Front. Psychol. 9, 1580 (2018)

    Article  Google Scholar 

  10. C. He, H. Ji, Z. Huang, X. Zhang, H. Liu, S. Liu, Y. Liu, M. Fang, X. Wu, X. Min, Preparation and photoluminescence properties of red-emitting phosphor ZnAl2O4:Eu3+ with an intense 5D0 → 7F2 transition. Mater. Res. Express 5, 025501 (2018)

    Article  Google Scholar 

  11. M. Kumar, M. Mohapatra, V. Natarajan, Luminescence characteristics of blue emitting ZnAl2O4: Ce nano phosphors. J. Lumin. 149, 118–124 (2014)

    Article  CAS  Google Scholar 

  12. S.J. Lee, S. Cho, Synthesis and luminescence properties of ZnAl2O4:RE3+ (RE = Eu, Sm) phosphors. J. Korean Phys. Soc. 64, 135–139 (2014)

    Article  CAS  Google Scholar 

  13. V. Singh, V. Natrajan, J.J. Zhu, Studies on Eu doped Ba and Zn aluminate phosphor prepared by combustion synthesis. Opt. Mater. 29, 1447–1451 (2007)

    Article  CAS  Google Scholar 

  14. C. He, H. Ji, Z. Huang, X. Zhang, Y. Liu, M. Fang, X. Wu, X. Min, Preparation, structure, luminescence properties of europium doped zinc spinel structure green-emitting phosphor ZnAl2O4:Eu2+. J Rare Earths 36(9), 931–938 (2018)

    Article  CAS  Google Scholar 

  15. X.Y. Chen, C. Ma, Spherical porous ZnAl2O4:Eu3+ phosphors: PEG-assisted hydrothermal growth and photoluminescence. Opt. Mater. 32(3), 415–421 (2010)

    Article  CAS  Google Scholar 

  16. Z. Lou, J. Hao, Cathodoluminescence of rare-earth-doped zinc aluminate films. Thin Solid Films 450, 334–340 (2004)

    Article  CAS  Google Scholar 

  17. Z. Lou, J. Hao, Cathodoluminescent characteristics of green-emitting ZnAl2O4: Mn thin-film phosphors. Appl. Phys. A 80, 151–154 (2005)

    Article  CAS  Google Scholar 

  18. C.C. Yang, S.-Y. Chen, S.Y. Cheng, Synthesis and physical characteristics of ZnAl2O4 nanocrystalline and ZnAl2O4/Eu core-shell structure via hydrothermal route. Powder Technol. 148, 3–6 (2004)

    Article  CAS  Google Scholar 

  19. E.M. Sanchez, M.G. Hipolito, J. Guzman, F.R. Brito, J.S. Salazar, R.M. Martinez, O.A. Freg-oso, M.I. Ramos-Cortes, J.J. Mendez-Delgado, C. Falcony, Cathodoluminescent characteristics of Sm-doped ZnAl2O4 nanostructured powders. Phys. Status Solidi A 202(1), 102–107 (2005)

    Article  Google Scholar 

  20. M. Garcıa-Hipolit, J. Guzman-Mendoza, E. Martınez, O. Alvarez-Fregoso, C. Falcony, Growth and cathodoluminescent characteristics of blue emitting cerium-doped zinc aluminate layers synthesized by spray pyrolysis technique. Phys. Status Solidi A 201, 1510–1517 (2004)

    Article  Google Scholar 

  21. S.F. Wang, F. Gu, M.K. Lu, X.F. Cheng, W.G. Zou, G.J. Zhou, S.M. Wang, Y.Y. Zhou, Synthesis and photoluminescence characteristics of Dy3+-doped ZnAl2O4 nanocrystals via a combustion process. J. Alloys Compd. 394, 255–258 (2005)

    Article  CAS  Google Scholar 

  22. A. Fernández-Osorio, C.E. Rivera, J. Chávez, Europium-doped ZnAl2O4 nanophosphors: structural and luminescence properties. In Proc. World Congress on New Technologies (New Tech 2015) 360, 1–6 (2015)

  23. Z. Xia, Q. Liu, Progress in discovery and structural design of color conversion phosphors for LEDs. Prog. Mater. Sci. 84, 59–117 (2016)

    Article  CAS  Google Scholar 

  24. G.K. Behrh, R. Gautier, C. Latouche, S. Jobic, H. Serier-Brault, Synthesis and photoluminescence properties of Ca2Ga2SiO7:Eu3+ red phosphors with an intense 5D0→ 7F4 transition. Inorg. Chem. 55, 9144–9146 (2016)

    Article  CAS  Google Scholar 

  25. C. He, H. Ji, Z. Huang, X. Zhang, Y. Liu, M. Fang, X. Wu, X. Min, Preparation, structure, luminescence properties of europium doped zinc spinel structure green-emitting phosphor ZnAl2O4:Eu2+. J. Rare Earths 36(9), 931–938 (2018)

    Article  CAS  Google Scholar 

  26. N.C. George, K.A. Denault, R. Seshadri, Phosphors for solid-state white lighting. Annu. Rev. Mater. 43, 481–501 (2013)

    Article  CAS  Google Scholar 

  27. G. Li, Y. Tian, Y. Zhaoa, J. Lin, Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev. 44, 8688–8713 (2015)

    Article  CAS  Google Scholar 

  28. P. Dorenbos, Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds. J. Lumin. 104(4), 239–260 (2003)

    Article  CAS  Google Scholar 

  29. S. Shimono, K. Yoshimoto, Y. Ueda, Y. Nanai, H. Kishimura, A. Aruga, Effects of Eu2+ substitution on structural and optical properties with blue light emission in pollucite CsAlSi2O6 phosphor. J. Lumin. 232, 117846 (2021)

    Article  CAS  Google Scholar 

  30. Z. Chen, Y. Yan, Crystalline and luminescent properties of citrate sol-gel derived BAM phosphor. Mater. Lett. 61, 3927–3930 (2007)

    Article  CAS  Google Scholar 

  31. A.K. Verma, S.K. Pathak, A. Verma, G.V. Bramhe, I.P. Sahu, Tuning of luminescent properties of Zn1-xMgAl10O17: Eux nano phosphor. J. Alloys Compd. 764, 1021–1032 (2018)

    Article  CAS  Google Scholar 

  32. A.K. Verma, A. Verma, G.V. Bramhe, Shifting and enhanced photoluminescence performance of the Sr1-xEuxMgAl10O17 phosphor. J. Alloys Compd. 774, 1168–1180 (2019)

    Article  CAS  Google Scholar 

  33. A.K. Verma, A. Verma, G.V. Bramhe, I.P. Sahu, Optical studies of the Ba1-xMgAl10O17: Eux phosphor synthesis by combustion route. J. Alloys Compd. 769, 831–842 (2018)

    Article  CAS  Google Scholar 

  34. A.K. Verma, A. Verma, Synthesis, characterization, mechano-luminescence, thermoluminescence, and antibacterial properties of SrMgAl10O17: Eu phosphor. J. Alloys Compd. 802, 394–408 (2019)

    Article  CAS  Google Scholar 

  35. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953)

    Article  CAS  Google Scholar 

  36. K.D. Liss, A. Bartels, A. Schreyer, H. Clemens, High-energy X-rays: a tool for advanced bulk investigations in materials science and physics. Texture Microstruct. 35, 219–252 (2003)

    Article  Google Scholar 

  37. R.J. Wiglusz, T. Grzyb, A. Bednarkiewicz, S. Lis, W. Strek, Investigation of structure, morphology, and luminescence properties in blue-red emitter, europium-activated ZnAl2O4 nanospinels. Eur. J. Inorg. Chem. 21, 3418–3426 (2012)

    Article  Google Scholar 

  38. R. Priya, A. Negib, S. Singla, O.P. Pandey, Luminescent studies of Eu doped ZnAl2O4 spinels synthesized by low-temperature combustion route. Optik 204, 164173 (2020)

    Article  CAS  Google Scholar 

  39. U. Rodehorst, M. Carpenter, S. Marion, C. Henderson, Structural phase transitions and mixing behavior of the Ba-aluminate (BaAl2O4)-Sr-aluminate (SrAl2O4) solid solution. Mineral. Magn. 67, 989 (2003)

    Article  CAS  Google Scholar 

  40. A. Sedky, A.M. Ali, M. Mohamed, Structural and optical investigation of pure and Al doped ZnO annealed at different temperatures. Opt. Quant. Electron. 52, 1–21 (2020)

    Article  Google Scholar 

  41. J.C. Wurst, J.A. Nelson, Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics. J. Am. Ceram. Soc. 55(2), 109 (1972)

    Article  CAS  Google Scholar 

  42. B. Verma, R.N. Baghel, D.P. Bisen, N. Brahme, V. Jena, Structural, luminescent properties and Judd-Ofelt analysis of CaMgSiO4:Eu3+ phosphor for solid state lighting. Opt. Mater. 123, 111787 (2022)

    Article  CAS  Google Scholar 

  43. D.A.R. Silva, L.R.C. Cavalcanti, A.L.S. Moura, M.L. Rocha, O.L.A. Neto, I.C. Cabral, K.M.S. Viana, A.C.F.M. Costa, Effect of the container in the synthesis of the combustion reaction of ZnAl2O4. Braz. Congr. Ceram. 56, 123 (2012)

    Google Scholar 

  44. K.M.D.S. Viana, B.B. Dantas, N.A.S. Nogueira, J.M. Sasaki, N.L.D. Freitas, R.H.G.A. Kiminami, A.C.F.D.M. Costa, Influence of fuel in the synthesis of ZnAl2O4 catalytic supports by combustion reaction. Mater. Sci. Forum 660–661, 52–57 (2010)

    Article  Google Scholar 

  45. D.L. Ge, Y.J. Fan, C.L. Qi, Z.X. Sun, Facile synthesis of highly thermostable mesoporous ZnAl2O4 with adjustable pore size. J. Mater. Chem. A1, 1651–1658 (2013)

    Article  Google Scholar 

  46. V. Ciupina, I. Carazeanu, G. Prodan, Characterization of ZnAl2O4 nanocrystals prepared by coprecipitation and microemulsion techniques. J. Optoelectron. Adv. Mater. 6(4), 1317–1322 (2004)

    CAS  Google Scholar 

  47. G. Blasse, On the Eu3+ fluorescence in mixed metal oxides III energy transfer in Eu3+ activated tungstate’s and molybdates of the type Ln2WO6 and Ln2MoO6. J. Chem. Phys. 45, 2356 (1966)

    Article  CAS  Google Scholar 

  48. K. Fiaczyk, E. Zych, On peculiarities of Eu3+ and Eu2+ luminescence in Sr2GeO4 host. RSC Adv. 6, 91836–91845 (2016)

    Article  CAS  Google Scholar 

  49. Z.H. Zhang, Y.H. Wang, Enhanced emission and improved thermal stability of BaMgAl10O17:Eu2+ phosphor via additional Mg2+ doping. Mater. Lett. 61, 4128–4130 (2007)

    Article  CAS  Google Scholar 

  50. V. Pike, S. Patraw, A.L. Diaz, B.G. DeBoer, Defect chemistry and VUV optical properties of the BaMgAl10O17:Eu2+-Ba0.75Al11O17.25:Eu2+ solid solution. J. Solid State Chem. 173, 359–366 (2003)

    Article  CAS  Google Scholar 

  51. M. Nogami, T. Yamazaki, Y. Abe, Fluorescence properties of Eu3+ and Eu2+ in Al2O3-SiO2 glass. J. Lumin. 78, 63–68 (1998)

    Article  CAS  Google Scholar 

  52. L. Wang, H. Zhang, Y. Hui Li, P. Liang, Y. Shen, Enhanced luminescence in the SrMgAl10O17: Eu2+ blue phosphor prepared by a hybrid urea-sol combustion route. Int. J. Appl. Ceram. Technol. 13(1), 185–190 (2016)

    Article  CAS  Google Scholar 

  53. J. Holsa, H. Jungner, M. Lastusaari, J. Niittykoski, Persistent luminescence of Eu2+ doped alkaline earth aluminates MAl2O4: Eu2+. J. Alloys Compd 323–324, 326–330 (2001)

    Article  Google Scholar 

  54. Z.H. Zhang, Y.H. Wang, Enhanced emission and improved thermal stability of BaMgAl10O17:Eu2+ phosphor via additional Mg2+ doping, material letters. Mater. Lett. 61, 4128–4130 (2007)

    Article  CAS  Google Scholar 

  55. K.V.D. Eeckhout, P.F. Smet, D. Poelman, Persistent luminescence in Eu2+-doped compounds: a review. Mater. 3, 2536–2566 (2010)

    Article  Google Scholar 

  56. Y.F. Wu, Y.T. Nien, Y.J. Wang, I.G. Chen, Enhancement of photoluminescence and color purity of CaTiO3: Eu phosphor by Li doping. J. Am. Ceram. Soc. 95(4), 1360–1366 (2012)

    Article  CAS  Google Scholar 

  57. I.P. Sahu, Luminescence properties of dysprosium doped barium aluminosilicate phosphors prepared by the solid-state reaction method. J. Mater. Sci. Mater. Electron. 27, 13134–13147 (2016)

    Article  CAS  Google Scholar 

  58. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17, 142–144 (1992)

    Article  Google Scholar 

  59. X.G. Zhu, S.P. Long, D.R. Ort, what is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 19, 153–159 (2008)

    Article  CAS  Google Scholar 

  60. W. Chen, J. Yi, H. Yuan, L. Li, F. Fang Sun, Synthesis and tunable luminescence of Eu3+ and Eu2+ co doped LaSr2AlO5:Eu phosphors for LED application. Mater. Today Commun. 13, 290–294 (2017)

    Article  CAS  Google Scholar 

  61. A. Ghosh, P. Selvaraj, S. Sundaram, T.K. Mallick, The colour rendering index and correlated colour temperature of dye-sensitized solar cell for adaptive glazing application. Sol. Energy 163, 537–544 (2018)

    Article  CAS  Google Scholar 

  62. J.C. De Mello, H.F. Wittmann, R.H. Friend, An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9(3), 230–232 (1997)

    Article  Google Scholar 

  63. A. Armin, M. Velusamy, P. Wolfer, Y. Zhang, P.L. Burn, P. Meredith, A. Pivrikas, Quantum efficiency of organic solar cells: electro-optical cavity considerations. ACS Photonics 1, 173–181 (2014)

    Article  CAS  Google Scholar 

  64. A.L.N. Stevels, A.D.M. Schrama-de Pauw, Eu luminescence in hexagonal aluminates containing large divalent or trivalent cations. J. Electrochem. Soc. 123(5), 691–697 (1976)

    Article  CAS  Google Scholar 

  65. P.A. Prashanth, R.S. Raveendra, R.H. Krishna, S. Ananda, N.P. Bhagya, B.M. Nagabhusna, K. Lingaraju, H.R. Naika, Synthesis characterization, antimicrobial and photoluminescence studies of solution combustion derived α-Al2O3 nanoparticles. J. Am. Ceram. Soc. 3, 345–351 (2015)

    Article  Google Scholar 

  66. R.K. Dutta, B.P. Nenavatha, M.K. Gangishelty, A.V.R. Reddy, studies on antibacterial activity of ZnO, Nanoparticles by ROS induced lipid peroxidation. Colloids Surf. B Biointerfaces 94, 143–150 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DSKPDF-UGC for the fellowship (No. F.4-2/2006(BSR)/PH/20-21/0067), Govt. of India to A.K. Verma and also grateful to CIF of Dr. H.S.G.U. Sagar, (M.P.), India for providing research facility.

Funding

Akshkumar Verma is awarded by UGC-DSKPDF Delhi, India for the fellowship (No. F.4-2/2006(BSR)/PH/20-21/0067), Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

AK designed the whole research, performed sample preparation and collected experimental data, contributed toward conceptualization, formal analysis, investigation, data curation, and writing, reviewing and editing of the manuscript. IP collected Rietveld refinement PXRD plot, contributed toward manuscript editing, reviewing and analysis. SN and TR prepared samples for measurements of antibacterial properties. DP and AV revised the articles and proposed many good suggestions, AKS reviewed & edited the manuscript.

Corresponding author

Correspondence to Akshkumar Verma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s10854-023-10503-w

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Bisen, D.P., Nema, S. et al. RETRACTED ARTICLE: Investigation of structural, luminescence, and anti-bacterial properties of novel Zn1−xEuxAl2−yO4Sry phosphor. J Mater Sci: Mater Electron 33, 15858–15878 (2022). https://doi.org/10.1007/s10854-022-08486-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08486-1

Navigation