Skip to main content
Log in

Evidence for negative differential resistance and switchable diode effect in multiferroic BiFe0.95Sc0.05O3-based resistive random access memory under doping engineering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This report explores the influence of scandium (Sc) doping on structural, optical, and resistive switching properties of multiferroic \(BiFe_{0.95}Sc_{0.05}O_3\) (BFS5O) thin-film. The as-grown spin-coated film exhibits unchanged crystal structure, i.e., rhombohedral, along with the appearance of a minor residual phase, confirms X-ray diffraction. Doping engineering distorts the \(FeO_6\) octahedron due to the tuning of lattice parameters manifest from the shifting of Raman phonon modes. The fabricated Au/BFS5O/FTO-resistive random access memory (RRAM) exhibits distinct bipolar resistive switching at a SET voltage (+1.75 V) and RESET voltage (-0.8 V) with significant endurance (ON/OFF ratio \(\sim 84\)) and retention over 100 multiple testing cycles. Doping induces a signature of negative differential resistance effect during the SET process. While achieving the LRS, the conduction process follows the well-known Ohmic and trap-controlled space charge-limited conduction mechanism. However, the HRS is completely dominated by Schottky barrier emission. It can be believed that the oxygen vacancies of BFS5O film under the electro-migration effect construct a metallic filament bridge responsible for achieving various resistive states under external voltage bias. The formation of Schottky contact near the Au/BFS5O interface indicates the device possibly achieves switchable diode effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature (London) 453, 80–83 (2008)

    Article  CAS  Google Scholar 

  2. F. Zahoor, T.Z. Azni Zulkifli, F.A. Khanday, Nano Res. Lett. 15, 90 (2020)

    Article  CAS  Google Scholar 

  3. Y.C. Yang, F. Pan, Q. Liu, M. Liu, J. Phys. D 49, 185302 (2016)

    Article  CAS  Google Scholar 

  4. A. Ney, C. Pampuch, R. Koch, K.H. Ploog, Nature 425, 485 (2003)

    Article  CAS  Google Scholar 

  5. A. Gyanathan, Y.-C. Yeo, J. Appl. Phys. 112, 104504 (2012)

    Article  CAS  Google Scholar 

  6. Hiroshi Ishiwara, Curr. Appl. Phys. 12, 603–611 (2012)

    Article  Google Scholar 

  7. R.K. Katiyar, Y. Sharma, D.G. Diestra, P. Misra, S. Kooriyattil, S.P. Pavunny, G. Morell, B.R. Weiner, J.F. Scott, R.S. Katiyar, AIP Adv. 5, 037109 (2015)

    Article  CAS  Google Scholar 

  8. Y. Li, J. Chu, W. Duan, G. Cai, X. Fan, X. Wang, G. Wang, Y. Pei, A.C.S. Appl, Mater. Interfaces 10, 29 (2018)

    Google Scholar 

  9. X. Zhang, L. Xu, H. Zhang, J. Liu, D. Tan, L. Chen, Z. Ma, W. Li, Nanoscale Res. Lett. 15, 11 (2020)

    Article  CAS  Google Scholar 

  10. D. Carta, I. Salaoru, A. Khiat, A. Regoutz, C. Mitterbauer, N.M. Harrison, T. Prodromakis, A.C.S. Appl, Mater. Interfaces 8, 30 (2016)

    Article  CAS  Google Scholar 

  11. Y.S. Zhi, P.G. Li, P.C. Wang, D.Y. Guo, Y.H. An, Z.P. Wu, X.L. Chu, J.Q. Shen, W.H. Tang, and C. R. Li AIP Advances 6, 015215 (2016)

    Article  CAS  Google Scholar 

  12. A.K. Singh, S. Blonkowski, M. Kogelschatz, J. Appl. Phys. 124, 014501 (2018)

    Article  CAS  Google Scholar 

  13. Y. Watanabe, J.G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, A. Beck, Appl. Phys. Lett. 78, 3738 (2001)

    Article  CAS  Google Scholar 

  14. J.P.B. Silva, C. Almeida Marques, J. AgostinhoMoreira, O. Conde, J. Mater. Chem. C 5, 10353 (2017)

    Article  CAS  Google Scholar 

  15. A.K. Jena, A.K. Sahoo, J. Mohanty, Appl. Phys. Lett. 116, 092901 (2020)

    Article  CAS  Google Scholar 

  16. A.K. Jena, J. Mohanty, A.J. Chelvane, J. Alloys Compds. 805, 1168–1174 (2019)

    Article  CAS  Google Scholar 

  17. Z. Wang et al., Nat. Rev. Mater. 5, 173–195 (2020)

    Article  CAS  Google Scholar 

  18. V.K. Sangwan, M.C. Hersam, Nat. Nanotechnol. 15, 517–528 (2020)

    Article  CAS  Google Scholar 

  19. S. Ghoreishi, M. Behpour, A. Khoobi, S. Masoum, Arab. J. Chem. 10, S3156 (2017)

    Article  CAS  Google Scholar 

  20. A. Nasab, S.M. Hoseinpour, M.R. Nasrabadi, S. Pourmasoud, M. Eghbali-Arani, F. Ahmadi, J. Mater. Sci. Mater. Electron. 32, 269 (2021)

    Article  CAS  Google Scholar 

  21. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  CAS  Google Scholar 

  22. S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

    Article  CAS  Google Scholar 

  23. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)

    Article  CAS  Google Scholar 

  24. C.Y. Kuo, Z. Hu, J.C. Yang, S.C. Liao, Y.L. Huang, R.K. Vasudevan, M.B. Okatan, S. Jesse, S.V. Kalinin, L. Li et al., Nat. Commun. 7, 12712 (2016)

    Article  CAS  Google Scholar 

  25. P. Kumar, D. Kaur, Nanotechnology 32, 445704 (2021)

    Article  CAS  Google Scholar 

  26. M. Vagadia, A. Ravalia, P.S. Solanki, R.J. Choudhary, D.M. Phase, Appl. Phys. Lett. 103, 033504 (2013)

    Article  CAS  Google Scholar 

  27. J.M. Luo, S.P. Lin, Y. Zheng, B. Wang, Appl. Phys. Lett. 101, 062902 (2012)

    Article  CAS  Google Scholar 

  28. D.P. Dutta et al., J. Phys. Chem. C 117, 2382–2389 (2013)

    Article  CAS  Google Scholar 

  29. S. Titus et al., Solid State Commun. 268, 61–63 (2017)

    Article  CAS  Google Scholar 

  30. A.K. Jena, J. Mohanty, J Mater Sci Mater Electron 29, 5150 (2018)

    Article  CAS  Google Scholar 

  31. H.N. Mohanty, A.K. Jena, U. Yadav et al., J. Alloys Compds. 887, 161336 (2021)

    Article  CAS  Google Scholar 

  32. S.R. Shannigrahi, A. Huang, N. Chandrasekhar, D. Tripathy, A.O. Adeyeye, Appl. Phys. Lett. 90, 022901 (2007)

    Article  CAS  Google Scholar 

  33. M.K. Singh, H.M. Jang, S. Ryu, M.H. Jo, Appl. Phys. Lett. 88, 042907 (2006)

    Article  CAS  Google Scholar 

  34. H. Fukumura, H. Harima, K. Kisoda, M. Tamada, Y. Noguchi, M. Miyayama, J. Mag. Mag. Mater. 310, 367 (2007)

    Article  CAS  Google Scholar 

  35. A.A. Porporati, K. Tsuji, M. Valant, A.-K. Axelssond, G. Pezzotti, J. Raman Spectrosc. 41, 84–87 (2010)

    Article  CAS  Google Scholar 

  36. J. Xu, D. Xie, C. Yin, T. Feng, X. Zhang, G. Li, H. Zhao, Y. Zhao, S. Ma, T. Ren et al., J. Appl. Phys. 114, 154103 (2013)

    Article  CAS  Google Scholar 

  37. A. Kumar, D. Varshney, Ceram. Int. 38, 3935 (2012)

    Article  CAS  Google Scholar 

  38. K. Rajashree Das, Mandol, J. Magn. Magn. Mater. 324, 1913 (2012)

    Article  CAS  Google Scholar 

  39. Y. Jiang, B. Qin, X. Yue, Y. Zhao, Y. Jiang, D. Xiao, J. Zhu, J. Appl. Phys. 103, 074116 (2008)

    Article  CAS  Google Scholar 

  40. S. Irfan, S. Rizwan, Y. Shen, L. Li, Asfandiyar, S. Butt, C.-W. Nan, Sci. Rep. 7, 42493 (2017)

  41. M. Arora, M. Kumar, Ceram. Int. 41, 5705 (2015)

    Article  CAS  Google Scholar 

  42. H. Fki, M. Koubaaa, L. Sicard, W. Cheikhrouhou-Koubaaa, A. Cheikhrouhoua, S. Ammar-Merah, Ceram. Int. 43, 4139 (2017)

    Article  CAS  Google Scholar 

  43. R. Pisarev, A. Moskvin, A. Kalashnikova, T. Rasing, Phys. Rev. B 79, 235128 (2009)

    Article  CAS  Google Scholar 

  44. J. Tauc, Mater. Res. Bull. 3, 37 (1968)

    Article  CAS  Google Scholar 

  45. N. Gao, W. Chen, R. Zhang, J. Zhang, Z. Wu, W. Mao, J. Yang, X.A. Li, W. Huang, Comput. Theor. Chem. 36, 1084 (2016)

    Google Scholar 

  46. R.V. Pisarev, A.S. Moskvin, A.M. Kalashnikova, T. Rasing, Phys. Rev. B 79, 235128 (2009)

    Article  CAS  Google Scholar 

  47. K. Prashanthi, G. Thakur, T. Thundat, Surf. Sci. 606, L83 (2012)

    Article  CAS  Google Scholar 

  48. Y.C. Yang, F. Pan, Q. Liu, Z. Fei, Nano Lett. 9, 1636 (2009)

    Article  CAS  Google Scholar 

  49. A.K. Jena, H.N. Mohanty, J. Mohanty, Phys. Scr. 96, 045808 (2021)

    Article  CAS  Google Scholar 

  50. T. Guoa, B. Sun, Z. Yua, H. Zhaod, M. Leia, Y. Zhao, Phys. Chem. Chem. Phys. 20, 20635 (2018)

    Article  Google Scholar 

  51. Y. Feng, P. Huang, Z. Zhou, X. Ding, L. Liu, X. Liu, J. Kang, Nanoscale Res. Lett. 14, 86 (2019)

    Article  CAS  Google Scholar 

  52. X. Hu, W. Wang, B. Sun, Y. Wang, J. Li, G. Zhou, J. Phys. Chem. Lett. 12, 5377 (2021)

    Article  CAS  Google Scholar 

  53. Y. Zhu, M. Li, Z. Hu, X. Liu, Q. Wang, X. Fang, K. Guo, J. Phys. D 46, 215305 (2013)

    Article  CAS  Google Scholar 

  54. Y. Xia, W. He, L. Chen, X. Meng, Z. Liu, Appl. Phys. Lett. 90, 022907 (2007)

    Article  CAS  Google Scholar 

  55. G.R. Fox, S.B. Krupanidhi, J. Appl. Phys. 74, 1949 (1993)

    Article  CAS  Google Scholar 

  56. A. Chen, W. Zhang, L.R. Dedon, D. Chen, F. Khatkhatay, J.L.M. Driscoll, H. Wang, D. Yarotski, J. Chen, X. Gao et al., Advan. Func. Mat. 30, 2000664 (2020)

    Article  CAS  Google Scholar 

  57. Y.B. Lin, Z.B. Yan, X.B. Lu, Z.X. Lu, M. Zeng, Y. Chen, X.S. Gao, J.G. Wan, J.Y. Dai, J.M. Liu, Appl. Phys. Lett. 104, 143503 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

HNM acknowledges IIT Hyderabad for providing research facilities and University Grants Commission (UGC, India) for providing financial support.

Author information

Authors and Affiliations

Authors

Contributions

The experiments are performed by HNM. Both HNM and SM explained the results.

Corresponding author

Correspondence to S. Mishra.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, H.N., Mishra, S. Evidence for negative differential resistance and switchable diode effect in multiferroic BiFe0.95Sc0.05O3-based resistive random access memory under doping engineering. J Mater Sci: Mater Electron 33, 15848–15857 (2022). https://doi.org/10.1007/s10854-022-08485-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08485-2

Navigation