Skip to main content
Log in

Vapor growth and optimization of supersaturation for tailoring the physical properties of stoichiometric Sb2Se3 crystalline habits

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The evolution of different morphologies (fibers, whiskers, needles, and spherulites) of antimony selenide (Sb2Se3), devoid of foreign chemical elements, was explored by the physical vapor deposition (PVD) method, employing an indigenously assembled tubular furnace, which showed layer growth mode as per the metallurgical and scanning electron micrographs. Supersaturation for crystallization was optimized by precisely controlling the difference in temperatures of nutrient and growth zones, ΔT = TNTG, where ΔT = 125 to 350 °C. The strain and dislocation density of the crystals were evaluated from the crystallographic data. Monophase nature has been confirmed by Rietveld refinement analysis of the PXRD findings, using Full Proof software. UV–Vis-NIR and PL spectra of the morphologies revealed band gap, Eg in the range, 1.15–1.18 eV. Among these habits, good-quality whiskers bearing flat faces of appreciable crystallinity, stoichiometry, thermal stability and mechanical strength were produced due to the periodic deposition of atoms associated with the progression of smooth vapor–solid (vβ) interface as evident from PXRD, EDAX, XPS, TGA and microindentation analyses. Hall effect measurements resulted in obtaining appreciable values of electrical parameters, ρ = 145.36 Ω cm and n = 7.39 × 1018 cm−3 for PV applications. Moreover, optical studies justified direct transition with adequate photon absorption which promises the suitability of whiskers as absorbers in the energy conversion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All data generated or analyzed during this study have been deposited in this manuscript. All the compared data were properly cited and included in the reference section following the journal style.

References

  1. E.A. Gibson, Solar Energy Capture Materials (Royal Society of Chemistry, Cambridge, 2019)

    Book  Google Scholar 

  2. M. Kivambe, B. Aissa, N. Tabet, Emerging technologies in crystal growth of photovoltaic silicon: progress and challenges. Energy Procedia 130, 7 (2017)

    Article  CAS  Google Scholar 

  3. B. Wu, N. Stoddard, R. Ma, R. Clark, Bulk multicrystalline silicon growth for photovoltaic (PV) application. J. Cryst. Growth 310(7–9), 2178 (2008)

    Article  CAS  Google Scholar 

  4. L. Arnberg, M. Di Sabatino, E.J. Øvrelid, State-of-the-art growth of silicon for PV applications. J. Cryst. Growth 360, 56 (2012)

    Article  CAS  Google Scholar 

  5. A.G. Kunjomana, J. Bibin, S. Varadharajaperumal, M. Teena, Control of physical vapor deposition and architecture of stoichiometric SnSe heterojunction structures for solar cells. Vacuum 190, 110372 (2021)

    Article  CAS  Google Scholar 

  6. O. Oda, Compound Semiconductor Bulk Materials and Characterization (World Scientific Publishing Co. Pte. Ltd., Singapore, 2007)

    Book  Google Scholar 

  7. M. Afzaal, P. O’Brien, Recent developments in II–VI and III–VI semiconductors and their applications in solar cells. J. Mater. Chem. 16, 1597 (2006)

    Article  CAS  Google Scholar 

  8. M. Teena, A.G. Kunjomana, Grain-growth engineering and mechanical properties of physical-vapour-deposited InSe platelets. J. Appl. Crystallogr. 50, 1125 (2017)

    Article  CAS  Google Scholar 

  9. C.J. Ajayakumar, A.G. Kunjomana, Sublimation process and physical properties of vapor grown γ-In2Se3 platelet crystals. J. Cryst. Growth 453, 99 (2016)

    Article  CAS  Google Scholar 

  10. W. Rehwald, G. Harbeke, On the conduction mechanism in single crystal β-indium sulfide In2S3. J. Phys. Chem. Solids 26(8), 1309 (1965)

    Article  CAS  Google Scholar 

  11. T.K. Al-Hamdi, S.W. McPherson, S.K. Swain, J. Jennings, J.N. Duenow, X. Zheng, D.S. Albin, T. Ablekim, E. Colegrove, M. Amarasinghe, A. Ferguson, CdTe synthesis and crystal growth using the high-pressure Bridgman technique. J. Cryst. Growth 534, 125466 (2020)

    Article  CAS  Google Scholar 

  12. K.J. Norton, F. Alam, D.J. Lewis, A review of the synthesis, properties, and applications of bulk and two-dimensional tin (II) sulfide (SnS). Appl. Sci. 11, 2062 (2021)

    Article  CAS  Google Scholar 

  13. K.R. Reddy, N.K. Reddy, R.W. Miles, Photovoltaic properties of SnS based solar cells. Sol. Energy Mater Sol. Cells 90(18–19), 3041 (2006)

    Article  CAS  Google Scholar 

  14. K.J. Tiwari, M.Q. Ren, S.K. Vajandar, T. Osipowicz, A. Subrahmanyam, P. Malar, Mechanochemical bulk synthesis and e-beam growth of thin films of Sb2Se3 photovoltaic absorber. Sol. Energy 160, 56 (2018)

    Article  CAS  Google Scholar 

  15. G.X. Liang, Z.H. Zheng, P. Fan, J.T. Luo, J.G. Hu, X.H. Zhang, H.L. Ma, B. Fan, Z.K. Luo, D.P. Zhang, Thermally induced structural evolution and performance of Sb2Se3 films and nanorods prepared by an easy sputtering method. Sol. Energy Mater. Sol. Cells 174, 263 (2018)

    Article  CAS  Google Scholar 

  16. X. Liu, J. Chen, M. Luo, M. Leng, Z. Xia, Y. Zhou, S. Qin, D.J. Xue, L. Lv, H. Huang, D. Niu, Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Appl. Mater. Interfaces 6(13), 10687 (2014)

    Article  CAS  Google Scholar 

  17. A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X. Zu, A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Sol. Energy 201, 227 (2020)

    Article  CAS  Google Scholar 

  18. R.H. Nguyen, Gallium arsenide. Its uses in photovoltaic applications. IEEE Potentials 17(5), 33 (1998)

    Article  Google Scholar 

  19. R. Vadapoo, S. Krishnan, H. Yilmaz, C. Marin, Electronic structure of antimony selenide (Sb2Se3) from GW calculations. Phys. Status Solidi B 248(3), 700 (2011)

    Article  CAS  Google Scholar 

  20. T.D. Hobson, O.S. Hutter, M. Birkett, T.D. Veal, K. Durose, Growth and characterization of Sb2Se3 single crystals for fundamental studies, in A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC, (IEEE, 2018), p. 0818.

  21. R. Bacewicz, T.F. Ciszek, Liquid encapsulated crystal growth and electrical properties of Sb2Se3 and Bi2S3. J. Cryst. Growth. 109(1–4), 133 (1991)

    Article  CAS  Google Scholar 

  22. D. Wang, D. Yu, M. Shao, J. Xing, Y. Qian, Growth of Sb2Se3 whiskers via a hydrothermal method. Mater. Chem. Phys. 82(3), 546 (2003)

    Article  CAS  Google Scholar 

  23. K.K. Chattopadhyay, A.N. Banerjee, Introduction to Nanoscience and Nanotechnology (PHI Learning Private Limited, New Delhi, 2009)

    Google Scholar 

  24. G.L. Tan, D. Tang, D. Dastan, A. Jafari, J.P. Silva, X.T. Yin, Effect of heat treatment on electrical and surface properties of tungsten oxide thin films grown by HFCVD technique. Mater. Sci. Semicond. Process 122, 105506 (2021)

    Article  CAS  Google Scholar 

  25. N.D. Boscher, C.J. Carmalt, R.G. Palgrave, I.P. Parkin, Atmospheric pressure chemical vapour deposition of SnSe and SnSe2 thin films on glass. Thin Solid Films 516, 4750 (2008)

    Article  CAS  Google Scholar 

  26. M. Schöneich, M.P. Schmidt, P. Schmidt, Chemical vapour transport of bismuth and antimony chalcogenides M2Q3 (M= Sb, Bi, Q = Se, Te). Z. Anorg. Allg. Chem. 636, 1810 (2010)

    Article  CAS  Google Scholar 

  27. B.A. Smith, N. Cowlam, A.M. Shamah, The crystal growth and atomic structure of As2(Se, S)3 compounds. Philos. Mag. B 39(2), 111 (1979)

    Article  CAS  Google Scholar 

  28. J. Bibin, A.G. Kunjomana, Facile synthesis of novel antimony selenide nanocrystals with hierarchical architecture by physical vapor deposition technique. J. Appl. Crystallogr. 52(2), 312 (2019)

    Article  CAS  Google Scholar 

  29. P.M. Reshmi, A.G. Kunjomana, K.A. Chandrasekharan, Spherulitic crystallization of β-In2Te3 by physical vapour deposition. Cryst. Res. Technol. 46(2), 153 (2011)

    Article  CAS  Google Scholar 

  30. D. Arivuoli, F.D. Gnanam, P. Ramasamy, Growth and microhardness studies of chalcogneides of arsenic, antimony and bismuth. J. Mater. Sci. Lett. 7(7), 711 (1988)

    Article  CAS  Google Scholar 

  31. G. Ghosh, The Sb-Se (antimony-selenium) system. J. Phase Equilib. Diffus. 14(6), 753 (1993)

    Article  CAS  Google Scholar 

  32. I. Sunagawa, Crystals: Growth, Morphology, & Perfection (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  33. J. Manivannan, S. Kalaiselvan, R. Padmavathi, Vapor-grown carbon fiber synthesis, properties, and applications, in Composite and Nanocomposite Materials-From Knowledge to Industrial Applications. ed. by T.D. Ngo (Intech Open, London, 2020)

    Google Scholar 

  34. L. Jabbour, D. Chaussy, B. Eyraud, D. Beneventi, Highly conductive graphite/carbon fiber/cellulose composite papers. Compos. Sci. Technol. 72(5), 616 (2012)

    Article  CAS  Google Scholar 

  35. L. Qi, H. Cölfen, M. Antonietti, M. Li, J.D. Hopwood, A.J. Ashley, S. Mann, Formation of BaSO4 fibres with morphological complexity in aqueous polymer solutions. Chem. Eur. J. 7(16), 3526 (2001)

    Article  CAS  Google Scholar 

  36. H.J. Scheel, P. Capper, Crystal Growth Technology from Fundamentals and Simulation to Large-Scale Production (Wiley, Weinheim, 2008)

    Book  Google Scholar 

  37. N.D. Zhigadlo, Growth of whisker-like and bulk single crystals of PrFeAs (O, F) under high pressure. J. Cryst. Growth 382, 7 (2013)

    Article  CAS  Google Scholar 

  38. S.S. Brenner, Growth and properties of “Whiskers.” Science 128(3324), 569 (1958)

    Article  CAS  Google Scholar 

  39. H. Wang, J.M. Zhu, J.J. Zhu, L.M. Yuan, H.Y. Chen, Novel microwave-assisted solution-phase approach to radial arrays composed of prismatic antimonytrisulfide whiskers. Langmuir 19(26), 10993 (2003)

    Article  CAS  Google Scholar 

  40. A.R. Varma, Crystal Growth and Dislocations (Butterworth, London, 1953)

    Google Scholar 

  41. H.J. Wu, P.C. Lee, F.Y. Chiu, S.W. Chen, Y.Y. Chen, Self-assisted nucleation and growth of [010]-oriented Sb2Se3 whiskers: the crystal structure and thermoelectric properties. J. Mater. Chem. C 3(40), 10488 (2015)

    Article  CAS  Google Scholar 

  42. D. Martins, T. Stelzer, J. Ulrich, G. Coquerel, Formation of crystalline hollow whiskers as relics of organic dissipative structures. Cryst. Growth Des. 11(7), 3020 (2011)

    Article  CAS  Google Scholar 

  43. S.B. Trivedi, V.P. Bhatt, Growth of Se-Te whisker crystals from the vapour phase. J. Cryst. Growth 32(2), 227 (1976)

    Article  CAS  Google Scholar 

  44. K. Sangwal, Additives and Crystallization Processes from Fundamentals to Applications (Wiley, New York, 2007)

    Book  Google Scholar 

  45. N.W. Tideswell, F.H. Kruse, J.D. McCullough, The crystal structure of antimony selenide, Sb2Se3. Acta Crystallogr. 10(2), 99 (1957)

    Article  CAS  Google Scholar 

  46. K. Shan, F. Zhai, Z.Z. Yi, X.T. Yin, D. Dastan, F. Tajabadi, A. Jafari, S. Abbasi, Mixed conductivity and the conduction mechanism of the orthorhombic CaZrO3 based materials. Surf. Interfaces 23, 100905 (2021)

    Article  CAS  Google Scholar 

  47. S.L. Benjamin, C.H. De Groot, A.L. Hector, R. Huang, E. Koukharenko, W. Levason, G. Reid, Chemical vapour deposition of antimony chalcogenides with positional and orientational control: precursor design and substrate selectivity. J. Mater. Chem. C 3, 423 (2015)

    Article  CAS  Google Scholar 

  48. D. Dastan, N.B. Chaure, Influence of surfactants on TiO2 nanoparticles grown by sol-gel technique. J. Mater. Mech. Manufact. 2, 21 (2014)

    CAS  Google Scholar 

  49. J. Black, E.M. Conwell, L. Seigle, C.W. Spencer, Electrical and optical properties of some M2v−BN3vi−B semiconductors. J. Phys. Chem. Solids 2(3), 240 (1957)

    Article  CAS  Google Scholar 

  50. S.O. Pillai, Solid State Physics (Wiley, New York, 1994)

    Google Scholar 

  51. P. Yin, Z. Shi, L. Sun, P. Xie, D. Dastan, K. Sun, R. Fan, Improved breakdown strengths and energy storage properties of polyimide composites: The effect of internal interfaces of C/SiO2 hybrid nanoparticles. Polym. Compos. 42, 3000 (2021)

    Article  CAS  Google Scholar 

  52. Y. Leng, Materials Characterization Introduction to Microscopic and Spectroscopic Methods (Wiley, New York, 2008)

    Google Scholar 

  53. A.G. Kunjomana, K.A. Chandrasekharan, Dislocation and microindentation analysis of vapour grown Bi2Te3-xSex whiskers. Cryst. Res. Technol. 43(6), 594 (2008)

    Article  CAS  Google Scholar 

  54. O.P. Khanna, Materials Science and Metallurgy (Dhanpat Rai Publications (P) Ltd, New Delhi, 2014)

    Google Scholar 

  55. M. Harsy, J. Balázs, P. Sviszt, B. Pödör, E. Lendvay, Growth and some physical properties of non-stoichiometric CdS single crystals. J. Cryst. Growth 9, 209 (1971)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, A G Kunjomana, expresses gratitude to the University Grant Commission, New Delhi for providing the financial support to make use of the microscope and microhardness tester. Heartfelt acknowledgement goes to the Management of CHRIST (Deemed to be University), Bangalore for the assistance in completing this work. Thanks are due to IISC, Bangalore, CUSAT, Kochi, and M G University for the characterization facilities.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

The conceptualization, methodology, formal analysis, and investigation, writing the original draft preparation, and review editing of the research paper were contributed by all the authors ‘JB, AGK and MT.’ The experiment and data collection were done by JB. The research work was supervised by Prof. AGK.

Corresponding author

Correspondence to A. G. Kunjomana.

Ethics declarations

Conflict of interest

I hereby confirm that, the work described has not been published before; it is not under consideration for publication anywhere else; and publication has been approved by all co-authors and the responsible authorities at the institute (s) where the work has been carried out. Moreover, the submission has not previously been considered for publication by any other journal. Author Bibin John has received PhD scholarship from the Management of CHRIST (Deemed to be University), Bangalore. The authors declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibin, J., Kunjomana, A.G. & Teena, M. Vapor growth and optimization of supersaturation for tailoring the physical properties of stoichiometric Sb2Se3 crystalline habits. J Mater Sci: Mater Electron 33, 15814–15833 (2022). https://doi.org/10.1007/s10854-022-08483-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08483-4

Navigation