Skip to main content
Log in

Clad-modified fiber-optic magnetic field sensing characteristics of anion-doped bismuth manganite nanopowders

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It has been reported that magnetoelectric multiferroics are beneficial to magnetic field sensor applications and optoelectronic devices. The nanopowders of BMOS 5% (BiMnO2.95S0.05) and BMOCl 5% (BiMnO2.95Cl0.05) have been synthesized through the simple hydrothermal method. Optical properties studies reveal the lower bandgap values with a higher refractive index. The enhanced dielectric constant is shown by the anion (S2− and Cl)-doped BiMnO3 (BMO). Fiber-optic-based clad-modified fiber coated with nanopowders (BMOS 5% and BMOCl 5%) has been used for the detection of an applied magnetic field (17.2 mT to 190.6 mT). Evanescence wave technology has been utilized for the detection of the magnetic field. Nonmetallic (anion)-doped BMO reflects appreciable results in maximum sensitivity above 70% for both the samples (BMOS ~ 73.6% and BMOCl ~ 70.1%). Hence, the proposed sensor would be useful for magnetic field sensing applications for its simple preparation technique and cost-effectiveness, which is suitable for future magnetic field sensor device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. P. Ripka, M. Janošek, Advances in magnetic field sensors. IEEE Sens. J. 10, 1108–1116 (2010)

    Article  Google Scholar 

  2. J. Lenz, A.S. Edelstein, Magnetic sensors and their applications. IEEE Sens. J. 6, 631–649 (2006)

    Article  Google Scholar 

  3. M.J. Caruso, L.S. Withanawasam, Vehicle detection and compass applications using AMR magnetic sensors. Proc. Sens. Expo. 39, 477–489 (1999)

    Google Scholar 

  4. Y. Chen, Q. Han, T. Liu, X. Lan, H. Xiao, Optical fiber magnetic field sensor based on single-mode-multimode- single-mode structure and magnetic fluid. Opt. Lett 38, 3999–4001 (2013)

    Article  Google Scholar 

  5. A. Paliwal, M. Tomar, V. Gupta, Study of optical properties of Ce and Mn doped BiFeO3 thin films using SPR technique for magnetic field sensing. Vacuum 158, 48–51 (2018)

    Article  CAS  Google Scholar 

  6. T. Shen, Y. Feng, B. Sun, X. Wei, Magnetic field sensor using the fiber loop ring-down technique and an etched fiber coated with magnetic fluid. Appl. Opt. 55, 673 (2016)

    Article  Google Scholar 

  7. R. Aneesh, S.K. Khijwania, Zinc oxide nanoparticle-based optical fiber humidity sensor having linear response throughout a large dynamic range. Appl. Opt. 50, 5310–5314 (2011)

    Article  CAS  Google Scholar 

  8. P.J. Rivero, A. Urrutia, J. Goicoechea, F.J. Arregui, I.R. Matias, Humidity sensor based on silver nanoparticles embedded in a polymeric coating. Int. J. Smart Sens. Intell. Syst. 5, 71–83 (2012)

    CAS  Google Scholar 

  9. B. Renganathan, D. Sastikumar, G. Gobi, N.R. Yogamalar, A.C. Bose, Gas sensing properties of a clad modified fiber optic sensor with Ce, Li and Al doped nanocrystalline zinc oxides. Sens. Actuators B 156, 263–270 (2011)

    Article  CAS  Google Scholar 

  10. S. Kodaira, S.W. Korposh, W.J. Batty, T.R.P. James, Fabrication of highly efficient fiber-optic gas sensors using SiO2/polymer nanoporous thin films, in Proc. Int. Conf. Sens. Technol. IC (ICST ’08). (2008), pp. 481–485

  11. Y. Zheng, X. Dong, R. Yang, S. Zhang, J.C.C. Chan, P.P. Shum, Magnetic field sensor with optical fiber bi-taper-based interferometer coated by magnetic fluid. IEEE Sens. J. 14, 3148–3151 (2014)

    Article  CAS  Google Scholar 

  12. M. Taghizadeh, F. Bozorgzadeh, M. Ghorbani, Designing magnetic field sensor based on tapered photonic crystal fiber assisted by a ferrofluid. Sci. Rep. 11, 14325 (2021)

    Article  CAS  Google Scholar 

  13. Y. Li et al., All-fiber-optic vector magnetic field sensor based on side-polished fiber and magnetic fluid. Opt. Express 27, 35182–35188 (2019)

    Article  CAS  Google Scholar 

  14. S. Mohamed ManjoorShaibMaricar, D. Sastikumar, P. Reddy Vanga, M. Ashok, BiFeO3 clad modified fiber optic gas sensor for room temperature applications. Mater. Today Proc. 39, 245–249 (2020)

    Google Scholar 

  15. S. Sharma, A. Paliwal, M. Tomar, V. Gupta, Multiferroic BFO/BTO multilayer structures based magnetic field sensor. Physica B 571, 1–4 (2019)

    Article  CAS  Google Scholar 

  16. J.A. McLeod, Z.V. Pchelkina, L.D. Finkelstein, E.Z. Kurmaev, R.G. Wilks, A. Moewes, I.V. Solovyev, A.A. Belik, E. Takayama-Muromachi, Electronic structure of BiMO3 multiferroics and related oxides. Phys. Rev. B 81, 144103 (2010)

    Article  CAS  Google Scholar 

  17. A. Kinikar, D. Pawar, R. Kitture, S.N. Kale, Low magnetic field sensing using manganite interferometric approach. IEEE Sens. (2018). https://doi.org/10.1109/ICSENS.2018.8630285

    Article  Google Scholar 

  18. R. Seshadri, N.A. Hill, Visualizing the role of Bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3. Chem. Mater. 13, 2892–2899 (2001)

    Article  CAS  Google Scholar 

  19. D.W. Boukhvalov, I.V. Solovyev, Defects of the crystal structure and Jahn-Teller distortion in BiMnO3. Phys. Rev. B 82, 1–2 (2010)

    Article  CAS  Google Scholar 

  20. Z.H. Chi, H. Yang, S.M. Feng, F.Y. Li, R.C. Yu, C.Q. Jin, Room-temperature ferroelectric polarization in multiferroic BiMnO3. J. Magn. Magn. Mater. 310, e358–e360 (2007)

    Article  CAS  Google Scholar 

  21. X.H. Zhu, X.R. Chen, B.G. Liu, First-principles investigation of electronic and magnetic structures of centrosymmetric BiMnO3 using an improved approach. Solid State Commun. 243, 65–70 (2016)

    Article  CAS  Google Scholar 

  22. V. Samuel, S.C. Navale, A.D. Jadhav, A.B. Gaikwad, V. Ravi, Synthesis of ultrafine BiMnO3 particles at 100° C. Mater. Lett. 61, 1050–1051 (2007)

    Article  CAS  Google Scholar 

  23. S.A. Acharya, V.M. Gaikwad, S.K. Kulkarni, U.P. Despande, Low pressure synthesis of BiMnO3 nanoparticles: anomalous structural and magnetic features. J. Mater. Sci. 52, 458–466 (2017)

    Article  CAS  Google Scholar 

  24. B. Sun, C.M. Li, Light-controlled resistive switching memory of multiferroic BiMnO3 nanowire arrays. Phys. Chem. Chem. Phys. 17, 6718–6721 (2015)

    Article  CAS  Google Scholar 

  25. Z. Branković, G. Branković, M. Počuča-Nešić, Z. MarinkovićStanojević, M. Žunić, D. LukovićGolić, R. Tararam, M. Cilense, M.A. Zaghete, Z. Jagličić, M. Jagodič, J.A. Varela, Hydrothermally assisted synthesis of YMnO3. Ceram. Int. 41, 14293–14298 (2015)

    Article  CAS  Google Scholar 

  26. Y. Lin, S. Lin, M. Luo, J. Liu, Enhanced visible light photocatalytic activity of Zn2SnO4 via sulfur anion-doping. Mater. Lett. 63, 1169–1171 (2009)

    Article  CAS  Google Scholar 

  27. H. Zhou, L. Dai, L. Jia, J. Zhu, Y. Li, L. Wang, Effect of fluorine, chlorine and bromine doping on the properties of gadolinium doped barium cerate electrolytes. Int. J. Hydrog. Energy. 40, 8980–8988 (2015)

    Article  CAS  Google Scholar 

  28. J. Atanelov, P. Mohn, The electronic and magnetic properties of anion doped (C, N, S) GaFeO3; an ab initio DFT study. Comput. Mater. Sci. 117, 380–389 (2016)

    Article  CAS  Google Scholar 

  29. H. Huang, Trends of complete anion substitution on electronic, ferroelectric, and optoelectronic properties of BiFeX3 (X = O, S, Se, and Te). AIP Adv. 3, 1–9 (2021)

    Google Scholar 

  30. Q. Rong, L. Wang, A. Hu, W. Xiao, P.C. Sati, Magnetic properties in BiFeO3 doped with a non-metallic element: First-principles investigation. Phys. Status Solidi B 283, 279–283 (2016)

    Article  CAS  Google Scholar 

  31. H. Woo, T.A. Tyson, M. Croft, J.C. Woicik, S.W. Cheong, Correlations between the magnetic and structural properties of Ca-doped BiMnO3. Phys. Rev. B. 63, 1344121–13441212 (2001)

    Article  CAS  Google Scholar 

  32. K.S. Pugazhvadivu, M. Santhiya, L. Balakrishnan, K. Tamilarasan, Structural and morphological studies on Bi1-xCaxMnO3 thin films grown by RF magnetron sputtering. AIP Conf. Proc. 1731, 1–5 (2016)

    Google Scholar 

  33. A.A. Belik, function of doping Local distortions in multiferroic BiMnO3 as a function of doping. Sci. Technol. Adv. Mater. 12, 6 (2011)

    Article  CAS  Google Scholar 

  34. B. Revathi, L. Balakrishnan, N.K. Chandar, Structural, morphological, optical, dielectric and magnetic field sensing characteristics of Bi1-xKxMnO3 and BiMn1-yCoyO3 nanopowders: a comparative study. Mater. Lett. 256, 126655 (2019)

    Article  CAS  Google Scholar 

  35. P. Sahoo, A. Sharma, S. Padhan, G. Udayabhanu, R. Thangavel, UV-assisted water splitting of stable Cl-doped ZnO nanorod photoanodes grown via facile sol-gel hydrothermal technique for enhanced solar energy harvesting applications. J. Sol Energy 193, 148–163 (2019)

    Article  CAS  Google Scholar 

  36. K. Dib, M. Trari, Y. Bessekhouad, (S, C) co-doped ZnO properties and enhanced photocatalytic activity. Appl. Surf Sci. 505, 144541 (2020)

    Article  CAS  Google Scholar 

  37. M.B. Bellakki, V. Manivannan, Citrate-gel synthesis and characterization of yttrium-doped multiferroic BiFeO3. J. Solgel Sci. Technol. 53, 184–192 (2010)

    Article  CAS  Google Scholar 

  38. P.C. Sati, M. Arora, S. Chauhan, S. Chhoker, M. Kumar, Structural, magnetic, and optical properties of Pr and Zr codoped BiFeO3 multiferroic ceramics. J. Appl. Phys. 112, 094102 (2012)

    Article  CAS  Google Scholar 

  39. Z.S. Seddigi, M.A. Gondal, U. Baig, S.A. Ahmed, M.A. Abdulaziz, E.Y. Danish, A. Lais, Facile synthesis of light-harvesting semiconductor bismuth oxychloride nano photocatalysts for efficient removal of hazardous organic pollutants. PLoS ONE 12, 0172218 (2017)

    Article  CAS  Google Scholar 

  40. V. Aulock, Handbook of microwave ferrites (Academic Press, New York, 1965)

    Google Scholar 

  41. J.P. Singh, G. Dixit, R.C. Srivastava, H.M. Agrawal, R. Kumar, Raman and Fourier-transform infrared spectroscopic study of nanosized zinc ferrite irradiated with 200 MeV Ag15+ beam. J. Alloys Compd. 551, 370–375 (2013)

    Article  CAS  Google Scholar 

  42. A.J. Reddy, M.K. Kokila, H. Nagabhushana, R.P.S. Chakradhar, C. Shivakumara, J.L. Rao, B.M. Nagabhushana, Structural, optical, and EPR studies on ZnO: cu nanopowders prepared via low temperature solution combustion synthesis. J. Alloys Compd. 509, 5349–5355 (2011)

    Article  CAS  Google Scholar 

  43. J.H. Lee, X. Ke, R. Misra, J.F. Ihlefeld, X.S. Xu, Z.G. Mei, T. Heeg, M. Roeckerath, J. Schubert, Z.K. Liu, J.L. Musfeldt, P. Schiffer, D.G. Schlom, Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy. Appl. Phys. Lett. 96, 5–7 (2010)

    Google Scholar 

  44. F. Li, D. Liu, G. Gao, B. Xue, Y. Jiang, Environmental Improved visible-light photocatalytic activity of NaTaO3 with perovskite-like structure via sulfur anion doping. Appl. Catal. B 166, 104–111 (2015)

    Article  CAS  Google Scholar 

  45. L. Hannachi, N. Bouarissa, Band parameters for cadmium and zinc chalcogenide compounds. Physica B 404, 3650–3654 (2009)

    Article  CAS  Google Scholar 

  46. Q. Ou, X. Bao, Y. Zhang, Y. Shao, G. Xing, X. Li, Q. Bao, Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. J. NanoMater. 1, 268–287 (2019)

    Google Scholar 

  47. X. Tang, D. Li, Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response. J. Phys. Chem. C 112, 5405–5409 (2008)

    Article  CAS  Google Scholar 

  48. H. Zhang, Y. Lv, J. Wang, H. Ma, Z. Sun, W. Huang, Influence of Cl incorporation in perovskite precursor on the crystal growth and storage stability of perovskite solar cells. ACS Appl. Mater. Interfaces 11, 6022–6030 (2019)

    Article  CAS  Google Scholar 

  49. N. Bhardwaj, A. Gaur, K. Yadav, Effect of doping on optical properties in BiMn1−x(TE)xO3 (where x = 0.0, 0.1 and TE = Cr, Fe Co, Zn) nanoparticles synthesized by microwave and sol-gel methods. Appl. Phys. A 123, 1–7 (2017)

    Article  CAS  Google Scholar 

  50. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, M. Hajdúchová, Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method. J. Adv. Nat. Sci. 8, 045002 (2017)

    Google Scholar 

  51. M. Jalalah, M. Faisal, H. Bouzid, A.A. Ismail, S.A. Al-Sayari, Dielectric and photocatalytic properties of sulfur doped TiO2 nanoparticles prepared by ball milling. Mater. Res. Bull. 48, 3351–3356 (2013)

    Article  CAS  Google Scholar 

  52. B.D. Gupta, C.D. Singh, Fiber-optic evanescent field absorption sensor: a theoretical evaluation. Fiber Integr. Opt. 13, 433–443 (2015)

    Article  Google Scholar 

  53. L.B. Felsen, Rays, modes and beams in optical fiber waveguides. Quantum Electron. 9, 189–195 (1977)

    Article  Google Scholar 

  54. A. Molak, D.K. Mahato, A.Z. Szeremeta, Synthesis, and characterization of electrical features of bismuth manganite and bismuth ferrite: effects of doping in cationic and anionic sublattice: materials for applications. Prog. Cryst. Growth Charact. Mater. 64, 1–22 (2018)

    Article  CAS  Google Scholar 

  55. L. Chen, X. Li, Z. Mao, J. Zhang, X. Chen, Magnetic augment in the nitrogen substituted bismuth ferrite. IEEE Trans. Magn. 51, 49–52 (2015)

    Google Scholar 

Download references

Acknowledgements

One of the authors, BR, is thankful to the VIT management for providing TRAship and the corresponding author NKC would like to thank VIT for providing “VIT SEED GRANT” for carrying out this research work.

Author information

Authors and Affiliations

Authors

Contributions

BR contributed toward conceptualization, data curation, investigation, writing of the original draft, methodology, and formal analysis. NKC contributed toward conceptualization, methodology, supervision, the investigation, writing, reviewing, and editing the resources, and visualization.

Corresponding author

Correspondence to N. Krishna Chandar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the research presented in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revathi, B., Chandar, N.K. Clad-modified fiber-optic magnetic field sensing characteristics of anion-doped bismuth manganite nanopowders. J Mater Sci: Mater Electron 33, 15742–15753 (2022). https://doi.org/10.1007/s10854-022-08476-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08476-3

Navigation