Skip to main content
Log in

Studies of structural, dielectric and electrical characteristics of YBaCuFeO5 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, we have mainly carried out comprehensive studies of structural, microstructure, dielectric, electrical (impedance, modulus, conductivity, leakage current) characteristics of the Fe-modified Y2BaCuO5 of a chemical composition of YBaCuFeO5, fabricated by a. cost-effective ceramic fabrication technique. Room-temperature X-ray diffraction studies reveal that it crystallizes in tetragonal crystal system. SEM and EDAX of the sample provide the micro structural details of the ceramic sample with homogeneous grain and grain-boundary distribution. Dielectric and impedance characteristics have been studied over a frequency range of (1 kHz–1 MHz). Maxwell–Wagner polarization effect observed from the frequency response of polarization study is also evident from the grain and grain-boundary resistances obtained from Nyquist plot. Electric modulus studies and scaling behavior with details of the relaxation time of the sample has been discussed. Leakage current behavior has also been discussed and the type of mechanism responsible for conduction is indicated to be space-charge limited conduction mechanism. Owing to the increasing demand for miniaturization of electronic components and the versatility of applications; design and fabrication of new dielectric ceramics is of great interest to us. Major applications include sensors, actuators, transducers and capacitors. These applications require the dielectric ceramics to have high value of dielectric constant, low dielectric loss, high Tc value (in case of ferroelectric sample) etc. So far detailed analysis of electrical transport behavior, impedance characteristics, I–V (current–voltage) characteristics and leakage current behavior within a temperature range from 25 °C -400 °C for YBaCuFeO5 has not been carried out. High-K dielectric materials finds major applications in central processing units, dynamic random access memories, multilayered ceramic capacitors that are the building blocks of printed circuit boards. In such a scenario exploring the dielectric, impedance and electrical behavior of the synthesized ceramic sample YBaCuFeO5 at room and higher temperature can provide significant insights which can help broaden the amount of work carried out for this material. In our synthesized sample we have observed a dielectric constant of 395 at 50 kHz at room temperature and high value of 8514 is observed at a higher peak around 231 °C for the same frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data sets supporting the results reported in the manuscript can be available from the corresponding author on reasonable request.

References

  1. M.T. Anderson, J.T. Vaughey, K.R. Poeppelmeier, Structural similarities among relaxation in the double perovskite YBaCuFeO5. J. Phys. Condens. Matter 29(14), 145801 (1993)

    Google Scholar 

  2. M.K. Srivastava, X.S. Qiu, Y.Y. Chin, S.H. Hsieh, Y.C. Shao, Y.H. Liang, C.H. Lai, C.H. Du, H.T. Wang, J.W. Chiou, Y.C. Lai, The effect of orbital-lattice coupling on the electrical resistivity of YBaCuFeO5 investigated by X-ray absorption. Sci. Rep. 9(1), 1–11 (2019)

    Article  Google Scholar 

  3. M. Morin, A. Scaramucci, M. Bartkowiak, E. Pomjakushina, G. Deng, D. Sheptyakov, L. Keller, J. Rodriguez-Carvajal, N.A. Spaldin, M. Kenzelmann, K. Conder, Incommensurate magnetic structure, Fe/Cu chemical disorder, and magnetic interactions in the high-temperature multiferroic YBaCuFeO5. Phys. Rev. B 91(6), 064408 (2015)

    Article  Google Scholar 

  4. B. Kundys, A. Maignan, C. Simon, Multiferroicity with high-Tc in ceramics of the YBaCuFeO 5 ordered perovskite. Appl. Phys. Lett. 94(7), 072506 (2009)

    Article  Google Scholar 

  5. M.J. Ruiz-Aragón, E. Morán, U. Amador, J.L. Martínez, N.H. Andersen, H. Ehrenberg, Low-temperature magnetic structure of YBaCuFeO5 and the effect of partial substitution of yttrium by calcium. Phys. Rev. B 58(10), 6291 (1998)

    Article  Google Scholar 

  6. T. Sreenivasu, K.C. Sekhar, A. Paila, B. Suryanarayana, K.C. Mouli, J.P. Kumar, P. Tirupathi, Observation of dielectric anomalies at magnetic phase transitions in 0.5(BiFeO3)0.5(Ba0.9Sr0.1TiO3) multiferroic ceramic, in AIP Conference Proceedings (Vol. 2269, No. 1, p. 030007). AIP Publishing LLC, 2020.

  7. Y.C. Lai, C.H. Du, C.H. Lai, Y.H. Liang, C.W. Wang, K.C. Rule, H.C. Wu, H.D. Yang, W.T. Chen, G.J. Shu, F.C. Chou, Magnetic ordering and dielectric relaxation in the double perovskite YBaCuFeO5. J. Phys. Condens. Matter 29(14), 145801 (2017)

    Article  Google Scholar 

  8. S. Luo, K. Wang, Giant dielectric permittivity and magneto-capacitance effect in YBaCuFeO5. Scripta Mater. 146, 160–163 (2018)

    Article  CAS  Google Scholar 

  9. H. Kamiya, A. Kondo, T. Yokoyama, M. Naito, G. Jimbo, S. Nagaya, M. Miyajima, I. Hirabayashi, Effect of Y2BaCuO5 particle size on the properties of YBa2Cu3O7x superconductor. Adv. Powder Technol. 5(4), 339–351 (1994)

    Article  CAS  Google Scholar 

  10. T. Zangina, J. Hassan, K.A. Matori, U. Ahmadu, A. See, Sintering behavior, ac conductivity and dielectric relaxation of Li1.3Ti1.7Al0.3(PO4)3 NASICON compound. Results Phys. 6, 719–725 (2016)

    Article  Google Scholar 

  11. J.C. Dyre, The random free-energy barrier model for ac conduction in disordered solids. J. Appl. Phys. 64(5), 2456–2468 (1988)

    Article  Google Scholar 

  12. J.B. Jorcin, M.E. Orazem, N. Pébère, B. Tribollet, CPE analysis by local electrochemical impedance spectroscopy. Electrochim. Acta 51(8–9), 1473–1479 (2006)

    Article  CAS  Google Scholar 

  13. E.P.M. Van Westing, G.M. Ferrari, J.H.W. De Wit, The determination of coating performance with impedance measurements-I. Coating polymer properties. Corr. Sci. 34(9), 1511–1530 (1993)

    Article  Google Scholar 

  14. L.N. Patro, K. Kamala Bharathi, N. Ravi Chandra Raju, Microstructural and ionic transport studies of hydrothermally synthesized lanthanum fluoride nanoparticles. AIP Adv. 4(12), 127139 (2014)

    Article  Google Scholar 

  15. M.S. Abouzari, F. Berkemeier, G. Schmitz, D. Wilmer, On the physical interpretation of constant phase elements. Solid State Ion. 180(14–16), 922–927 (2009)

    Article  Google Scholar 

  16. M.T. Anderson, J.T. Vaughey, K.R. Poeppelmeier, Structural similarities among oxygen-deficient perovskites. Chem. Mater. 5(2), 151–165 (1993)

    Article  CAS  Google Scholar 

  17. L. Er-Rakho, C. Michel, P. Lacorre, B. Raveau, YBaCuFeO5+δ: a novel oxygen-deficient perovskite with a layer structure. J. Solid State Chem. 73(2), 531–535 (1988)

    Article  CAS  Google Scholar 

  18. Y.C. Lai, C.H. Du, C.H. Lai, Y.H. Liang, C.W. Wang, K.C. Rule, H.C. Wu, H.D. Yang, W.T. Chen, G.J. Shu, F.C. Chou, Magnetic ordering and dielectric relaxation in the double perovskite YBaCuFeO5. J. Phys. Condens. Matter. 29, 145801 (2017)

    Article  Google Scholar 

  19. M. Coşkun, Ö. Polat, F.M. Coşkun, Z. Durmuş, M. Çağlar, A. Türüt, The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90Ir0.10O3 perovskites. RSC Adv. 8(9), 4634–4648 (2018)

    Article  Google Scholar 

  20. N.H. Vasoya, P.K. Jha, K.G. Saija, S.N. Dolia, K.B. Zankat, K.B. Modi, Electric modulus, scaling and modeling of dielectric properties for Mn2+–Si4+ Co-substituted Mn–Zn ferrites. J. Electron. Mater. 45(2), 917–927 (2016)

    Article  CAS  Google Scholar 

  21. M. Prabu, S. Selvasekarapandian, Dielectric and modulus studies of LiNiPO4. Mater. Chem. Phys. 134(1), 366–370 (2012)

    Article  CAS  Google Scholar 

  22. D.P. Almond, C.C. Hunter, A.R. West, The extraction of ionic conductivities and hopping rates from ac conductivity data. J. Mater. Sci. 19(10), 3236–3248 (1984)

    Article  CAS  Google Scholar 

  23. M.M. Haque, M. Huq, M.A. Hakim, Thermal hysteresis of permeability and transport properties of Mn substituted Mg–Cu–Zn ferrites. J. Phys. D Appl. Phys. 41(5), 055007 (2008)

    Article  Google Scholar 

  24. K. Kamala Bharathi, G. Markandeyulu, C.V. Ramana, Microstructure, AC impedance and DC electrical conductivity characteristics of NiFe2xGdxO4 (x= 0, 005 and 0075). AIP Adv. 2(1), 012139 (2012)

    Article  Google Scholar 

  25. B. Shanmugavelu, V.R.K. Kumar, Thermal, structural and electrical studies of bismuth zinc borate glasses. Solid State Sci. 20, 59–64 (2013)

    Article  CAS  Google Scholar 

  26. F.C. Chiu, A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. (2014). https://doi.org/10.1155/2014/578168

    Article  Google Scholar 

  27. C.P. Kwan, M. Street, A. Mahmood, W. Echtenkamp, M. Randle, K. He, J. Nathawat, N. Arabchigavkani, B. Barut, S. Yin, R. Dixit, Space-charge limited conduction in epitaxial chromia films grown on elemental and oxide-based metallic substrates. AIP Adv. 9(5), 055018 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors Rashmi Rekha Sahoo would like to acknowledge DST, INSPIRE for the financial support.

Funding

No funding was received for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection was done by RRS and analysis were performed by RRS and RNPC. The first draft of the manuscript was written by RRS and RNPC all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rashmi Rekha Sahoo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, R.R., Choudhary, R.N.P. Studies of structural, dielectric and electrical characteristics of YBaCuFeO5 ceramics. J Mater Sci: Mater Electron 33, 15704–15718 (2022). https://doi.org/10.1007/s10854-022-08473-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08473-6

Navigation