Skip to main content
Log in

Structural and optical investigation of spray-deposited SnO2 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A study of the investigation of tin oxide (SnO2) thin films deposited by spray pyrolysis method was undertaken by analysing the structural and optical properties for different substrate temperatures. X-ray diffraction patterns have revealed that the formation of tetragonal tin oxide nanoparticles was observed and the crystallite size, strain and dislocation density of the samples vary with the substrate temperature. In addition, X-ray photoelectron spectroscopy was used to obtain the composition and electronic structure. From morphological characterization, it is clear that the thin films are uniform without cracks with dense morphology consisting homogenous distribution of crystallites in nanometer dimension. Analysis on optical properties revealed that the direct optical band gap of the SnO2 films lies between 3.88 and 3.98 eV up to the substrate temperature of 450 °C, and it showed a remarkable decrease to 3.73 eV for 500 °C. The envelope method analysis based on the use of the maxima and minima of the interference fringes has been used to define the complex index of refraction and the extinction coefficient. Photoluminescence characteristics of the SnO2 thin films were investigated at room temperature. The all photoluminescence spectra have exhibited six luminescence centres ascribed to the presence of intrinsic defects such as oxygen vacancies and structural defects in the SnO2. Two of them are for room-temperature radiative recombinations of band-acceptor and donor–acceptor pairs observed at 420 and 451 nm, respectively. All of the results have been appreciated for optoelectronic and sensor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors declare that all data generated or analysed during this study are included in this published article.

References

  1. P.A. Luque, O. Nava, C.A. Soto-Robles, H.E. Garrafa-Galvez, M.E. Martinez-Rosas, M.J. Chinchillas-Chinchillas, A.R. Vilchis-Nestor, A. Castro-Beltran, J. Mater. Sci. 31, 16859 (2020). https://doi.org/10.1007/s10854-020-04242-5

    Article  CAS  Google Scholar 

  2. C.G. Granqvist, Appl. Opt. 20, 2606 (1981). https://doi.org/10.1364/AO.20.002606

    Article  CAS  Google Scholar 

  3. S.K. Godlaveeti, A.R. Somala, S.S. Sana, M. Ouladsmane, A.A. Ghfar, R.R. Nagireddy, J. Clust. Sci. (2021). https://doi.org/10.1007/s10876-021-02092-7

    Article  Google Scholar 

  4. X. Sun, Y. Huang, M. Zong, H. Wu, X. Ding, J. Mater. Sci-Mater. El 27, 2682 (2016). https://doi.org/10.1007/s10854-015-4077-x

    Article  CAS  Google Scholar 

  5. C.G. Granqvist, Sol. Energy Mat. Sol. C 91, 1529 (2007). https://doi.org/10.1016/j.solmat.2007.04.031

    Article  CAS  Google Scholar 

  6. E.P. Simonenko, N.P. Simonenko, A.S. Mokrushin, A.A. Vasiliev, I.S. Vlasov, I.A. Volkov, T. Maeder, V.G. Sevastyanov, N.T. Kuznetsov, Russ. J. Inorg. Chem. 63, 851 (2018). https://doi.org/10.1134/S0036023618070197

    Article  CAS  Google Scholar 

  7. S. Gürakar, T. Serin, N. Serin, Adv. Mater. Lett. 5, 309 (2014). https://doi.org/10.5185/amlett.2014.amwc.1016

    Article  CAS  Google Scholar 

  8. Z.M. Jarzebski, J.P. Marton, J. Electrochem. Soc. 123, 299C (1976). https://doi.org/10.1149/1.2133090

    Article  CAS  Google Scholar 

  9. S. Das, V. Jayaraman, Prog. Mater. Sci. 66, 112 (2014). https://doi.org/10.1016/j.pmatsci.2014.06.003

    Article  CAS  Google Scholar 

  10. T.P. Chow, M. Ghezzo, B.J. Baliga, J. Electrochem. Soc. 129, 1040 (1982). https://doi.org/10.1149/1.2124012

    Article  CAS  Google Scholar 

  11. S. Vadivel, G. Rajarajan, J. Mater. Sci. 26, 7127 (2015). https://doi.org/10.1007/s10854-015-3335-2

    Article  CAS  Google Scholar 

  12. M. Aziz, S.S. Abbas, W.R.W. Baharom, W.Z.W. Mahmud, Mater. Lett. 74, 62 (2012). https://doi.org/10.1016/j.matlet.2012.01.073

    Article  CAS  Google Scholar 

  13. M. Velumani, S.R. Meher, Z.C. Alex, J. Mater. Sci. 29, 3999 (2018). https://doi.org/10.1007/s10854-017-8342-z

    Article  CAS  Google Scholar 

  14. D.A. Qader, R.A. Ismail, A.A. Mossa, K.I. Hassoon, J. Mater. Sci. 22, 1681 (2011). https://doi.org/10.1007/s10854-011-0345-6

    Article  CAS  Google Scholar 

  15. X. Wang, R. Huang, X.Y. Kong, Appl. Phys. A 116, 1959 (2014). https://doi.org/10.1007/s00339-014-8366-7

    Article  CAS  Google Scholar 

  16. M. Batzill, J.M. Burst, U. Diebold, Thin Solid Films 484, 132 (2005). https://doi.org/10.1016/j.tsf.2005.02.016

    Article  CAS  Google Scholar 

  17. P.I. Gaiduk, A.N. Kozjevko, S.L. Prokopjev, C. Tsamis, A. NylandstedLarsen, Appl. Phys. A 91, 667 (2008). https://doi.org/10.1007/s00339-008-4505-3

    Article  CAS  Google Scholar 

  18. E. Elangovan, M.P. Singha, M.S. Dharmaprakashb, K. Ramamurthi, J. Optoelectron. Adv. Mater. 6, 197 (2004)

    CAS  Google Scholar 

  19. S. Bansal, D.K. Pandya, S.C. Kashyap, D. Haranath, J. Alloy Compd. 583, 186 (2014). https://doi.org/10.1016/j.jallcom.2013.08.135

    Article  CAS  Google Scholar 

  20. S. Bansal, D.K. Pandya, S.C. Kashyap, Physica E 135, 114965 (2022). https://doi.org/10.1016/j.physe.2021.114965

    Article  CAS  Google Scholar 

  21. H.P. Asha, N.B. Gummagol, P. ShankaragoudaPatil, B.V. Rajendra, Superlattice Microstruct. 155, 106920 (2021). https://doi.org/10.1016/j.spmi.2021.106920

    Article  CAS  Google Scholar 

  22. G. Blattner, C. Klingshirn, R. Helbig, Solid State Commun. 33, 341 (1980). https://doi.org/10.1016/0038-1098(80)91166-7

    Article  CAS  Google Scholar 

  23. A. Kar, M.A. Stroscio, M. Dutta, J. Kumari, M. Meyyappan, Semicond. Sci. Technol. 25, 024012 (2010). https://doi.org/10.1088/0268-1242/25/2/024012

    Article  CAS  Google Scholar 

  24. R. Chen, G.Z. Xing, J. Gao, Z. Zhang, T. Wu, H.D. Sun, Appl. Phys. Lett. 95, 061908 (2009). https://doi.org/10.1063/1.3205122

    Article  CAS  Google Scholar 

  25. X. Feng, J. Ma, F. Yang, F. Ji, F. Zong, C. Luan, H. Ma, Solid State Commun. 144, 269 (2007). https://doi.org/10.1016/j.ssc.2007.07.028

    Article  CAS  Google Scholar 

  26. B. Liu, C.W. Cheng, R. Chen, Z.X. Shen, H.J. Fan, H.D. Sun, J. Phys. Chem. C 114, 3407 (2010). https://doi.org/10.1021/jp9104294

    Article  CAS  Google Scholar 

  27. M. Gaidi, A. Hajjaji, R. Smirani, B. Bessais, M.A. El Khakani, J. Appl. Phys. 108, 063537 (2010). https://doi.org/10.1063/1.3485811

    Article  CAS  Google Scholar 

  28. H. Shao-Bo, W. Shi-Fa, D. Qing-Ping, Y. Xiao-Dong, Z. Wan-Guo, X. Xia, L. Zhi-Jie, Z. Xiao-Tao, Chin. Phys. B 22, 058102 (2013). https://doi.org/10.1088/1674-1056/22/5/058102

    Article  CAS  Google Scholar 

  29. M. Kul, M. Zor, A.S. Aybek, S. Irmak, E. Turan, Sol. Energy Mater. Sol. C 91, 882 (2007). https://doi.org/10.1016/j.solmat.2007.01.020

    Article  CAS  Google Scholar 

  30. E. Turan, M. Zor, M. Kul, A.S. Aybek, T. Taskopru, Philos. Mag. 92, 1716 (2012). https://doi.org/10.1080/14786435.2012.657708

    Article  CAS  Google Scholar 

  31. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice-Hall, New York, 2001)

    Google Scholar 

  32. K. Gurumurugan, D. Mangalaraj, S.K. Narayandass, K. Sekar, C.P.G. Vallabhan, Semicond. Sci. Technol. 9, 1827 (1994)

    Article  CAS  Google Scholar 

  33. F.C. Eze, Mater. Chem. Phys. 89, 205 (2005). https://doi.org/10.1016/j.matchemphys.2003.11.039

    Article  CAS  Google Scholar 

  34. R. Ghosh, D. Basaka, S. Fujihara, J. Appl. Phys. 96, 2689 (2004). https://doi.org/10.1063/1.1769598

    Article  CAS  Google Scholar 

  35. H. Köse, Ş Karaal, A.O. Aydin, H. Akbulut, Mater. Sci. Semicond. Process. 38, 404 (2015). https://doi.org/10.1016/j.mssp.2015.03.028

    Article  CAS  Google Scholar 

  36. J.R. Mohamed, C. Sanjeeviraja, L. Amalraj, J. Asian Ceram. Soc. 4, 191 (2016). https://doi.org/10.1016/j.jascer.2016.03.002

    Article  Google Scholar 

  37. G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34 (1956). https://doi.org/10.1080/14786435608238074

    Article  CAS  Google Scholar 

  38. M.A. Yıldırım, S. Tuna Yıldırım, E. Fedakar Sakar, A. Ateş, Spectrochim. Acta A 133, 60 (2014). https://doi.org/10.1016/j.saa.2014.05.035

    Article  CAS  Google Scholar 

  39. A. Tombak, Y.S. Ocak, F. Bayansal, Appl. Surf. Sci. 493, 1075 (2019). https://doi.org/10.1016/j.apsusc.2019.07.087

    Article  CAS  Google Scholar 

  40. L. Yang, X. Zhou, L. Song, Y. Wang, X. Wu, N. Han, Y. Chen, A.C.S. Appl, Nano Mater. 1, 6327 (2018)

    CAS  Google Scholar 

  41. S.K. Sinha, S. Ghosh, Physica E 84, 434 (2016). https://doi.org/10.1016/j.physe.2016.07.019

    Article  CAS  Google Scholar 

  42. Y. Wu, Y. Lin, J. Xu, Photochem. Photobiol. Sci. 18, 1081 (2019). https://doi.org/10.1039/C8PP00493E

    Article  CAS  Google Scholar 

  43. J.I. Pankove, Optical Processes in Semiconductors, 2nd edn. (Dover, New York, 1976), pp. 35–36

    Google Scholar 

  44. V. Sharma, Tin Oxide Materials Synthesis, Properties, and Applications (Elsevier, Amsterdam, 2020), p. 61

    Book  Google Scholar 

  45. P. Chetri, A. Choudury, Physica E 47, 257 (2013). https://doi.org/10.1016/j.physe.2012.11.011

    Article  CAS  Google Scholar 

  46. W. Zhou, Y. Liu, Y. Yang, P. Wu, J. Phys. Chem. C 118, 6448 (2014). https://doi.org/10.1021/jp500546r

    Article  CAS  Google Scholar 

  47. J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys. E 9, 1002 (1976). https://doi.org/10.1088/0022-3735/9/11/032

    Article  CAS  Google Scholar 

  48. D.B. Kushev, N.N. Zheleva, Y. Demakopoulou, D. Siapkas, Infrared Phys. 26, 385 (1986). https://doi.org/10.1016/0020-0891(86)90063-1

    Article  CAS  Google Scholar 

  49. M. Anastasescu, M. Gartner, S. Mihaiu, C. Anastasescu, M. Purica, E. Manea, M.Zaharescu, 2006 International Semiconductor Conference, pp. 163–166 (2006) https://doi.org/10.1109/SMICND.2006.283958

  50. S. Baco, A. Chik, FMd. Yassin, J. Sci. Technol. 4, 61 (2012)

    Google Scholar 

  51. J.P. Chatelon, C. Terrier, J.A. Roger, Semicond. Sci. Technol. 14, 642 (1999). https://doi.org/10.1088/0268-1242/14/7/310

    Article  CAS  Google Scholar 

  52. E. Turan, E. Zeybekoğlu, M. Kul, Thin Solid Films 692, 137632 (2019). https://doi.org/10.1016/j.tsf.2019.137632

    Article  CAS  Google Scholar 

  53. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 1986), p. 397

    Google Scholar 

  54. Y. Mi, H. Odaka, S. Iwata, Jpn. J. Appl. Phys. 38, 3453 (1999). https://doi.org/10.1143/JJAP.38.3453

    Article  CAS  Google Scholar 

  55. S.H. Luo, Q. Wan, W.L. Liu, M. Zhang, Z.T. Song, C.L. Lin, P.K. Chu, Prog. Solid State Chem. 33, 287 (2005). https://doi.org/10.1016/j.progsolidstchem.2005.11.008

    Article  CAS  Google Scholar 

  56. M. Bhatnagar, V. Kaushik, A. Kaushal, M. Singh, B.R. Mehta, AIP Adv. 6, 095321 (2016). https://doi.org/10.1063/1.4964313

    Article  CAS  Google Scholar 

  57. R. Bargougui, K. Omri, A. Mhemdi, S. Ammar, Adv. Mater. Lett. 6, 816 (2015). https://doi.org/10.5185/amlett.2015.5844

    Article  CAS  Google Scholar 

  58. C.V. Reddy, R.V.S.S.N. Ravikumar, G. Srinivas, J. Shim, M. Cho, Mater. Sci. Eng. B 221, 63 (2017). https://doi.org/10.1016/j.mseb.2017.04.002

    Article  CAS  Google Scholar 

  59. A. Kar, M.A. Stroscio, M. Dutta, J. Kumari, M. Meyyappan, Appl. Phys. Lett. 94, 101905 (2009). https://doi.org/10.1063/1.3097011

    Article  CAS  Google Scholar 

  60. C.G. Fonstad, R.H. Rediker, J. Appl. Phys. 42, 2911 (1971). https://doi.org/10.1063/1.1660648

    Article  CAS  Google Scholar 

  61. J.A. Marley, R.C. Dockerty, Phys. Rev. 140, A304 (1965). https://doi.org/10.1103/PhysRev.140.A304

    Article  Google Scholar 

  62. Ç. Kılıç, A. Zunger, Phys. Rev. Lett. 88, 095501 (2002). https://doi.org/10.1103/PhysRevLett.88.095501

    Article  CAS  Google Scholar 

  63. F. Gu, S.F. Wang, C.F. Song, M.K. Lü, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Chem. Phys. Lett. 372, 451 (2003). https://doi.org/10.1016/S0009-2614(03)00440-8

    Article  CAS  Google Scholar 

  64. J. Gajendiran, V. Rajendran, Mater. Lett. 139, 116 (2015). https://doi.org/10.1016/j.matlet.2014.10.056

    Article  CAS  Google Scholar 

  65. B.K. Vinayak, M.U. Arun, AIP Adv. 3, 082120 (2013). https://doi.org/10.1063/1.4819451

    Article  CAS  Google Scholar 

  66. A. Kar, M.A. Stroscio, M. Meyyappan, D.J. Gosztola, G.P. Wiederrecht, M. Dutta, Nanotechnology 22, 285709 (2011). https://doi.org/10.1088/0957-4484/22/28/285709

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Eskişehir Technical University Faculty of Science for XRD and FESEM measurements. The authors would also like to thank Dr. Ferhunde ATAY and Dr. İdris AKYÜZ for the use of PL equipment from Eskişehir Osmangazi University, Department of Physics.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Evren Turan, Metin Kul and Seçkin Akın. The first draft of the manuscript was written by Evren Turan and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to E. Turan.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turan, E., Kul, M. & Akın, S. Structural and optical investigation of spray-deposited SnO2 thin films. J Mater Sci: Mater Electron 33, 15689–15703 (2022). https://doi.org/10.1007/s10854-022-08472-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08472-7

Navigation