Skip to main content
Log in

DLTS study of the influence of annealing on deep level defects induced in xenon ions implanted n-type 4H-SiC

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, nitrogen-doped 4H-SiC samples were bombarded with 167 MeV xenon ions to a fluence of 1 × 108 cm−2 at 300 K prior to the fabrication of Schottky barrier diodes. The implanted samples were annealed at approximately 900 °C for 1 h before the resistive evaporation of nickel Schottky barrier diodes. In comparing the current–voltage results of the implanted devices with as-deposited ones, generation-recombination took place in the implanted Schottky barrier diodes. Four defects (100, 120, 170, and 650 meV) were present in as-deposited Schottky barrier diodes when characterized by deep level transient spectroscopy (DLTS). In addition to the defects observed in the as-deposited samples, two additional defects with activation energies of 400 and 700 meV below the conduction band minimum were induced by Xe ions implantation. The two deep level defects present have signatures similar to defects present after irradiated by MeV electron. The two defects present after irradiation disappeared after annealing at 400 °C which indicate instability of the defects after annealing implanted samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. F.D. Auret, W.E. Meyer, S. Coelho, M. Hayes, Electrical characterization of defects introduced during electron beam deposition of Pd Schottky contacts on n-type Ge. Appl. Phys. Lett. 88(24), 242110 (2006)

    Article  CAS  Google Scholar 

  2. F. Roccaforte, F. La Via, A. Baeri, V. Raineri, L. Calcagno, F. Mangano, Structural and electrical properties of Ni/Ti Schottky contacts on silicon carbide upon thermal annealing. J. Appl. Phys. 96(8), 4313–4318 (2004)

    Article  CAS  Google Scholar 

  3. M. Biber, M. Çakar, A. Türüt, The effect of anodic oxide treatment on n-GaAs Schottky barrier diodes. J. Mater. Sci.: Mater. Electron. 12(10), 575–579 (2001)

    CAS  Google Scholar 

  4. N. Dasgupta, A. Dasgupta, in Semiconductor Devices: Modelling and Technology (PHI Learning Pvt. Ltd., 2004)

  5. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006)

    Book  Google Scholar 

  6. S.S. Li, Semiconductor Physical Electronics (Springer, Berlin, 2012)

    Google Scholar 

  7. R.T. Tung, Recent advances in Schottky barrier concepts. Mater. Sci. Eng. R. Rep. 35(1), 1–138 (2001)

    Article  Google Scholar 

  8. W. Mönch, Semiconductor Surfaces and Interfaces (Springer, Berlin, 2013)

    Google Scholar 

  9. E. Omotoso, W.E. Meyer, F.D. Auret, M. Diale, P.N.M. Ngoepe, Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences. Physica B 480, 196–200 (2016)

    Article  CAS  Google Scholar 

  10. G. Myburg, F. Auret, Influence of the electron beam evaporation rate of Pt and the semiconductor carrier density on the characteristics of Pt/n-GaAs Schottky contacts. J. Appl. Phys. 71(12), 6172–6176 (1992)

    Article  CAS  Google Scholar 

  11. E. Omotoso, W.E. Meyer, S.M. Coelho, M. Diale, P.N.M. Ngoepe, F.D. Auret, Electrical characterization of defects introduced during electron beam deposition of W Schottky contacts on n-type 4H-SiC. Mater. Sci. Semicond. Process. 51, 20–24 (2016)

    Article  CAS  Google Scholar 

  12. S.M. Tunhuma, F.D. Auret, M.J. Legodi, M. Diale, The effect of high temperatures on the electrical characteristics of Au/n-GaAs Schottky diodes. Physica B 480, 201–205 (2016)

    Article  CAS  Google Scholar 

  13. N. Mehmood, Optoelectronic and Thermal Properties of Metallic Transition Metal Dichalcogenides (Bilkent University, Ankara, 2020)

    Google Scholar 

  14. C.S. Lim, H. Nickel, A. Naoumidis, E. Gyarmati, Interfacial reaction and adhesion between SiC and thin sputtered nickel films. J. Mater. Sci. 32(24), 6567–6572 (1997)

    Article  CAS  Google Scholar 

  15. V. Kazukauskas, J.-V. Vaitkus, Influence of defect traps and inhomogeneities of SiC crystals and radiation detectors on carrier transport. Opto-Electron. Rev. 12(4), 377–382 (2004)

    CAS  Google Scholar 

  16. J. Grant, W. Cunningham, A. Blue, V. O’Shea, J. Vaitkus, E. Gaubas, M. Rahman, Wide bandgap semiconductor detectors for harsh radiation environments. Nucl. Instrum. Methods Phys. Res. Sect. A 546(1–2), 213–217 (2005)

    Article  CAS  Google Scholar 

  17. A. Akbay, H. Korkut, K. Ejderha, T. Korkut, A. Türüt, Responses of Pt/n-InP Schottky diode to electron irradiation in different temperature conditions. J. Radioanal. Nucl. Chem. 289(1), 145–148 (2011)

    Article  CAS  Google Scholar 

  18. J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, J. Rebollo, A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29(5), 2155–2163 (2014)

    Article  Google Scholar 

  19. E.A. Jones, F.F. Wang, D. Costinett, Review of commercial GaN power devices and GaN-based converter design challenges. IEEE J. Emerg. Sel. Top. Power Electron. 4(3), 707–719 (2016)

    Article  Google Scholar 

  20. Y. Zhang, Comparison between competing requirements of GaN and SiC family of power switching devices, IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2020), p. 012004.

  21. M. Siad, M. Abdesslam, A.C. Chami, Role of carbon in the formation of ohmic contact in Ni/4HSiC and Ni/Ti/4HSiC. Appl. Surf. Sci. 258(18), 6819–6822 (2012)

    Article  CAS  Google Scholar 

  22. R. Madar, Materials science: silicon carbide in contention. Nature 430(7003), 974–975 (2004)

    Article  CAS  Google Scholar 

  23. O. Kordina, Growth and characterization of silicon carbide power device material (1994)

  24. K. Danno, T. Kimoto, Investigation of deep levels in n-type 4H-SiC epilayers irradiated with low-energy electrons. J. Appl. Phys. 100(11), 113728 (2006)

    Article  CAS  Google Scholar 

  25. E. Omotoso, W.E. Meyer, F.D. Auret, A.T. Paradzah, M. Diale, S.M.M. Coelho, P.J. Janse van Rensburg, The influence of high energy electron irradiation on the Schottky barrier height and the Richardson constant of Ni/4H-SiC Schottky diodes. Mater. Sci. Semicond. Process. 39, 112–118 (2015)

    Article  CAS  Google Scholar 

  26. E. Omotoso, W.E. Meyer, F.D. Auret, A.T. Paradzah, M. Diale, S.M.M. Coelho, P.J. Janse van Rensburg, P.N.M. Ngoepe, Effects of 5.4 MeV alpha-particle irradiation on the electrical properties of nickel Schottky diodes on 4H–SiC, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 365, Part A (2015), pp. 264–268.

  27. C. Hemmingsson, N.T. Son, O. Kordina, J.P. Bergman, E. Janzén, J.L. Lindström, S. Savage, N. Nordell, Deep level defects in electron-irradiated 4H SiC epitaxial layers. J. Appl. Phys. 81(9), 6155–6159 (1997)

    Article  CAS  Google Scholar 

  28. J. Doyle, M.K. Linnarsson, P. Pellegrino, N. Keskitalo, B. Svensson, A. Schoner, N. Nordell, J. Lindstrom, Electrically active point defects in n-type 4H–SiC. J. Appl. Phys. 84(3), 1354–1357 (1998)

    Article  CAS  Google Scholar 

  29. E. Viswanathan, R. Murugaraj, S. Sankar, A. Arulchakkaravarthi, D. Kanjilal, K. Sivaji, Low temperature dielectric study on swift heavy ion irradiated 6H-SiC crystals. Trans. Indian Inst. Met. 64(3), 305–308 (2011)

    Article  CAS  Google Scholar 

  30. E. Kalinina, G. Onushkin, D. Davidov, A. Hallen, A. Konstantinov, V. Skuratov, J. Stano, Electrical study of 4H-SiC irradiated with swift heavy ions, 12th International Conference on Semiconducting and Insulating Materials, 2002. SIMC-XII-2002 (IEEE, 2002), pp. 106–109

  31. E. Omotoso, Electrical Characterization of Process-and Radiation-Induced Defects in 4H-SiC (University of Pretoria, 2015)

  32. E.V. Kalinina, A.A. Lebedev, E. Bogdanova, B. Berenquier, L. Ottaviani, G.N. Violina, V.A. Skuratov, Irradiation of 4H-SiC UV detectors with heavy ions. Semiconductors 49(4), 540–546 (2015)

    Article  CAS  Google Scholar 

  33. S.M. Tunhuma, M. Diale, J.M. Nel, M.J. Madito, T.T. Hlatshwayo, F.D. Auret, Defects in swift heavy ion irradiated n-4H-SiC. Nucl. Instrum. Methods Phys. Res., Sect. B 460, 119–124 (2019)

    Article  CAS  Google Scholar 

  34. F.D. Auret, P.N. Deenapanray, Deep level transient spectroscopy of defects in high-energy light-particle irradiated Si. Crit. Rev. Solid State Mater. Sci. 29(1), 1–44 (2004)

    Article  CAS  Google Scholar 

  35. E. Omotoso, W.E. Meyer, F.D. Auret, A.T. Paradzah, M.J. Legodi, Electrical characterization of deep levels created by bombarding nitrogen-doped 4H-SiC with alpha-particle irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 371, 312–316 (2016)

    Article  CAS  Google Scholar 

  36. A.T. Paradzah, F.D. Auret, M.J. Legodi, E. Omotoso, M. Diale, Electrical characterization of 5.4 MeV alpha-particle irradiated 4H-SiC with low doping density, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 358 (2015), pp. 112–116

  37. T. Marinova, A. Kakanakova-Georgieva, V. Krastev, R. Kakanakov, M. Neshev, L. Kassamakova, O. Noblanc, C. Arnodo, S. Cassette, C. Brylinski, B. Pecz, G. Radnoczi, G. Vincze, Nickel based ohmic contacts on SiC. Mater. Sci. Eng. B 46(1–3), 223–226 (1997)

    Article  Google Scholar 

  38. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—the stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B 268(11), 1818–1823 (2010)

    Article  CAS  Google Scholar 

  39. S.S. Naik, V.R. Reddy, Temperature dependency and current transport mechanisms of Pd/V/n-type InP schottky rectifiers. Adv. Mater. Lett 3(3), 188–196 (2012)

    Article  CAS  Google Scholar 

  40. C.R. Crowell, Richardson constant and tunneling effective mass for thermionic and thermionic-field emission in Schottky barrier diodes. Solid·State Electron. 12(1), 55–59 (1969)

    Article  Google Scholar 

  41. C. Crowell, S. Sze, Current transport in metal-semiconductor barriers. Solid·State Electron. 9(11–12), 1035–1048 (1966)

    Article  CAS  Google Scholar 

  42. E. Rhoderick, R. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarendon, Oxford Science, Oxford, 1988)

    Google Scholar 

  43. V. Saxena, R. Prakash, Effect of steric hinderance on junction properties of poly (3-alkylthiophene)s based schottky diodes. Polym. Bull. 45(3), 267–274 (2000)

    Article  CAS  Google Scholar 

  44. F. Yakuphanoglu, B.F. Şenkal, Electronic and thermoelectric properties of polyaniline organic semiconductor and electrical characterization of Al/PANI MIS diode. J. Phys. Chem. C 111(4), 1840–1846 (2007)

    Article  CAS  Google Scholar 

  45. C.R. Crowell, The physical significance of the T0 anomalies in Schottky barriers. Solid·State Electron. 20(3), 171–175 (1977)

    Article  Google Scholar 

  46. A. Ahaitouf, A. Ahaitouf, J.P. Salvestrini, H. Srour, Accurate surface potential determination in Schottky diodes by the use of a correlated current and capacitance voltage measurements. Application to n-InP. J. Semicond. 32(10), 104002 (2011)

    Article  CAS  Google Scholar 

  47. L. Stauffer, CV Measurement Tips, Tricks, and Traps, Technical report (2008).

  48. A.R. Peaker, V.P. Markevich, I.D. Hawkins, B. Hamilton, K. Bonde Nielsen, K. Gościński, Laplace deep level transient spectroscopy: embodiment and evolution. Phys. B: Condens. Matter 407(15), 3026–3030 (2012)

    Article  CAS  Google Scholar 

  49. E. Omotoso, A.T. Paradzah, E. Igumbor, B. Taleatu, W.E. Meyer, F.D. Auret, Determination of capture barrier energy of the E-center in palladium Schottky barrier diodes of antimony-doped germanium by varying the pulse width. Mater. Res. Express 7(2), 025901 (2020)

    Article  CAS  Google Scholar 

  50. N.T. Son, X.T. Trinh, L.S. Løvlie, B.G. Svensson, K. Kawahara, J. Suda, T. Kimoto, T. Umeda, J. Isoya, T. Makino, T. Ohshima, E. Janzén, Negative-$U$ System of Carbon Vacancy in $4H$-SiC. Phys. Rev. Lett. 109(18), 187603 (2012)

    Article  CAS  Google Scholar 

  51. L. Storasta, J.P. Bergman, E. Janzén, A. Henry, J. Lu, Deep levels created by low energy electron irradiation in 4H-SiC. J. Appl. Phys. 96(9), 4909–4915 (2004)

    Article  CAS  Google Scholar 

  52. E. Omotoso, A.T. Paradzah, M.J. Legodi, M. Diale, W.E. Meyer, F.D. Auret, Electrical characterization of electron irradiated and annealed lowly-doped 4H-SiC. Nucl. Instrum. Methods Phys. Res., Sect. B 409, 41–45 (2017)

    Article  CAS  Google Scholar 

  53. T. Kimoto, A. Itoh, H. Matsunami, S. Sridhara, L. Clemen, R. Devaty, W. Choyke, T. Dalibor, C. Peppermüller, G. Pensl, Nitrogen donors and deep levels in high-quality 4H–SiC epilayers grown by chemical vapor deposition. Appl. Phys. Lett. 67(19), 2833–2835 (1995)

    Article  CAS  Google Scholar 

  54. A.A. Lebedev, Deep level centers in silicon carbide: a review. Semiconductors 33(2), 107–130 (1999)

    Article  CAS  Google Scholar 

  55. T. Dalibor, G. Pensl, H. Matsunami, T. Kimoto, W. Choyke, A. Schöner, N. Nordell, Deep defect centers in silicon carbide monitored with deep level transient spectroscopy. Phys. Status Solidi 162(1), 199–225 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial aid from the SA NRF (Grant No. 120856), as well as the University of Johannesburg (UJ) URC and FRC (Grant Nos. 282810, 083135) are acknowledged by AREP and CJS. V.A. Skuratov of Joint Institute for Nuclear Research, Dubna, Russia is acknowledged for ion implantation.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

EO: Conceptualization, design of research, experimental, analysis, writing original draft. EI: Analysis, reviewing and editing. WEM and FDA: conceptualization, design of research, reviewing, editing and supervision. TTH: Experimental, reviewing and editing. AREP and CJS: Funding acquisition, reviewing, editing and supervision. All authors read and approved the final text.

Corresponding authors

Correspondence to Ezekiel Omotoso or Charles J. Sheppard.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omotoso, E., Meyer, W.E., Igumbor, E. et al. DLTS study of the influence of annealing on deep level defects induced in xenon ions implanted n-type 4H-SiC. J Mater Sci: Mater Electron 33, 15679–15688 (2022). https://doi.org/10.1007/s10854-022-08471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08471-8

Navigation