Skip to main content

Advertisement

Log in

Effect of CdS Layer Thickness on Thermally Evaporated-CdS/CdTe Solar Cell Efficiency

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CdS thin films were deposited with different thicknesses on Fluorine-doped Tin Oxide glass substrates by vacuum thermal evaporation technique. Vacuum annealed CdS thin films were characterized for structural, optical, topological, and electrical properties. The optical bandgap of CdS varied between 2.39 and 2.43 eV with increasing thickness. Profile fit, Pawley Refinement technique, and Rietveld Refinement technique were used to determine structural properties and phase distribution. The influence of thickness on the photoelectrochemical (PEC) cells was discussed with current-voltage and Mott-Schottky analysis. The thermal evaporation technique was used to deposit the CdTe layer on top of the CdS layer to fabricate CdS/CdTe solar cells. The highest efficiency (4.43%) and external quantum efficiency (71%) were observed for the cells fabricated with CdS film thickness of 210 nm. SCAPS-1D simulation was used to confirm the variation further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Datasets related to this article can be found at http://dx.doi.org/10.17632/gjw3z6n978.1, an open-source online data repository hosted at Mendeley Data (Lakmal, A.A.I., 2021)

References

  1. J.P. Espinós, A.I. Martín-Concepción, C. Mansilla, F. Yubero, A.R. González-Elipe, X-ray photoelectron spectroscopy study of the nucleation processes and chemistry of CdS thin films deposited by sublimation on different solar cell substrate materials. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 24(4), 919–928 (2006). https://doi.org/10.1116/1.2198868

    Article  CAS  Google Scholar 

  2. P. Boieriu, R. Sporken, Y. Xin, N. Browning, S. Sivananthan, Wurtzite cds on cdte grown by molecular beam epitaxy. Journal of Electronic Materials 29(6), 718–722 (2000). https://doi.org/10.1016/0040-6090(95)06868-6

    Article  CAS  Google Scholar 

  3. P. Würfel, Physics of Solar Cells. Wiley (2005). https://doi.org/10.1002/9783527618545

  4. P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, B.S. Dassanayake, Variation of optical, structural, electrical and compositional properties of thermally evaporated cdte thin films due to substrate temperature. Journal of Materials Science: Materials in Electronics 28(1), 276–283 (2017). https://doi.org/10.1007/s10854-016-5521-2

    Article  CAS  Google Scholar 

  5. S. Lalitha, S.Z. Karazhanov, P. Ravindran, S. Senthilarasu, R. Sathyamoorthy, J. Janabergenov, Electronic structure, structural and optical properties of thermally evaporated cdte thin films. Physica B: Condensed Matter 387(1–2), 227–238 (2007). https://doi.org/10.1016/j.physb.2006.04.008

    Article  CAS  Google Scholar 

  6. A. Ashour, N. El-Kadry, S.A. Mahmoud, On the electrical and optical properties of cds films thermally deposited by a modified source. Thin Solid Films 269(1), 117–120 (1995). https://doi.org/10.1016/0040-6090(95)06868-6

    Article  CAS  Google Scholar 

  7. S. Butt, N.A. Shah, A. Nazir, Z. Ali, A. Maqsood, Influence of film thickness and in-doping on physical properties of cds thin films. Journal of Alloys and Compounds 587, 582–587 (2014). https://doi.org/10.1016/j.jallcom.2013.10.221

    Article  CAS  Google Scholar 

  8. P.P. Sahay, R.K. Nath, S. Tewari, Optical properties of thermally evaporated cds thin films. Crystal Research and Technology 42(3), 275–280 (2007). https://doi.org/10.1002/crat.200610812

    Article  CAS  Google Scholar 

  9. S.A. Mahmoud, A.A. Ibrahim, A.S. Riad, Physical properties of thermal coating cds thin films using a modified evaporation source. Thin Solid Films 372(1–2), 144–148 (2000). https://doi.org/10.1016/s0040-6090(00)01053-1

    Article  CAS  Google Scholar 

  10. P. Liu, V.P. Singh, C.A. Jarro, S. Rajaputra, Cadmium sulfide nanowires for the window semiconductor layer in thin film cds-cdte solar cells. Nanotechnology 22(14), 145304 (2011). https://doi.org/10.1088/0957-4484/22/14/145304

    Article  CAS  Google Scholar 

  11. R.W. Birkmire, B.E. Mccandless, S.S. Hegedus, Effects of processing on cdte/cds materials and devices. International Journal of Solar Energy 12(1–4), 145–154 (1992). https://doi.org/10.1080/01425919208909758

    Article  Google Scholar 

  12. A.A. Ojo, H.I. Salim, O.I. Olusola, M.L. Madugu, I.M. Dharmadasa, Effect of thickness: a case study of electrodeposited cds in cds/cdte based photovoltaic devices. Journal of Materials Science: Materials in Electronics 28(4), 3254–3263 (2017). https://doi.org/10.1007/s10854-016-5916-0

    Article  CAS  Google Scholar 

  13. W.G.C. Kumarage, R.P. Wijesundera, V.A. Seneviratne, C.P. Jayalath, B.S. Dassanayake, Tunable optoelectronic properties of CBD-CdS thin films via bath temperature alterations. Journal of Physics D: Applied Physics 49(9), 095109 (2016). https://doi.org/10.1088/0022-3727/49/9/095109

    Article  CAS  Google Scholar 

  14. P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, B.S. Dassanayake, Effect of post deposition heat treatment on microstructure parameters, optical constants and composition of thermally evaporated cdte thin films. Materials Science in Semiconductor Processing 58, 51–60 (2017). https://doi.org/10.1016/j.mssp.2016.11.028

    Article  CAS  Google Scholar 

  15. S. Chun, S. Lee, Y. Jung, J.S. Bae, J. Kim, D. Kim, Wet chemical etched cdte thin film solar cells. Current Applied Physics 13(1), 211–216 (2013). https://doi.org/10.1016/j.cap.2012.07.015

    Article  Google Scholar 

  16. D.L. Bätzner, R. Wendt, A. Romeo, H. Zogg, A.N. Tiwari, A study of the back contacts on cdte/cds solar cells. Thin Solid Films 361–362, 463–467 (2000). https://doi.org/10.1016/s0040-6090(99)00842-1

    Article  Google Scholar 

  17. S.A.-J. Jassim, A.A.R.A. Zumaila, G.A.A.A. Waly, Influence of substrate temperature on the structural, optical and electrical properties of cds thin films deposited by thermal evaporation. Results in Physics 3, 173–178 (2013). https://doi.org/10.1016/j.rinp.2013.08.003

    Article  Google Scholar 

  18. G. Zhyrair, M. Lenrik, A. Karapet, H. Valeri, A. Eduard, M. Khachatur, Determination of the complete set of optical parameters of micron-sized polycrystalline ch3nh3pbi3- xclx films from the oscillating transmittance and reflectance spectra. Materials Research Express 7(1), 016408 (2019). https://doi.org/10.1088/2053-1591/ab5c46

    Article  CAS  Google Scholar 

  19. A.A.I. Lakmal, R.K.K.G.R.G. Kumarasinghe, V.A. Seneviratne, J.-Y. Chen, J.-M. Song, B.S. Dassanayake, Thermally evaporated cds thin films for cds/cdte solar cells: Effect of substrate temperature on cds layer. Materials Science and Engineering: B 273, 115406 (2021). https://doi.org/10.1016/j.mseb.2021.115406

    Article  CAS  Google Scholar 

  20. H. Moualkia, S. Hariech, M.S. Aida, N. Attaf, E.L. Laifa, Growth and physical properties of cds thin films prepared by chemical bath deposition. Journal of Physics D: Applied Physics 42(13), 135404 (2009). https://doi.org/10.1088/0022-3727/42/13/135404

    Article  CAS  Google Scholar 

  21. W.G.C. Kumarage, R.P. Wijesundera, V.A. Seneviratne, C.P. Jayalath, B.S. Dassanayake, A study on the enhancement of opto-electronic properties of cds thin films: seed-assisted fabrication. Semiconductor Science and Technology 32(4), 045014 (2017). https://doi.org/10.1088/1361-6641/aa5ee3

    Article  CAS  Google Scholar 

  22. S. Chandramohan, A. Kanjilal, J.K. Tripathi, S.N. Sarangi, R. Sathyamoorthy, T. Som, Structural and optical properties of mn-doped cds thin films prepared by ion implantation. Journal of Applied Physics 105(12), 123507 (2009). https://doi.org/10.1063/1.3151712

    Article  CAS  Google Scholar 

  23. F. Liu, Y. Lai, J. Liu, B. Wang, S. Kuang, Z. Zhang, J. Li, Y. Liu, Characterization of chemical bath deposited cds thin films at different deposition temperature. Journal of Alloys and Compounds 493(1–2), 305–308 (2010). https://doi.org/10.1016/j.jallcom.2009.12.088

    Article  CAS  Google Scholar 

  24. D. Yang, X. Zhu, Z. Wei, W. Yang, L. Li, J. Yang, X. Gao, Structural and optical properties of polycrystalline cds thin films deposited by electron beam evaporation. Journal of Semiconductors 32(2), 023001 (2011). https://doi.org/10.1088/1674-4926/32/2/023001

    Article  CAS  Google Scholar 

  25. Wong, J., Omelchenko, S.T., Atwater, H.A.: Impact of semiconductor band tails and band filling on photovoltaic efficiency limits (2021) arXiv:2103.04871 [physics.app-ph]. doi: 10.1021/acsenergylett.0c02362.s001

  26. Nečas, D., Klapetek, P.: Gwyddion: an open-source software for spm data analysis. Open Physics 10(1) (2012). doi: 10.2478/s11534-011-0096-2

  27. A. Lasia, Semiconductors and Mott-Schottky Plots. Springer (2014). https://doi.org/10.1007/978-1-4614-8933-7_10

  28. P. Bindu, S. Thomas, Estimation of lattice strain in zno nanoparticles: X-ray peak profile analysis. Journal of Theoretical and Applied Physics 8(4), 123–134 (2014). https://doi.org/10.1007/s40094-014-0141-9

    Article  Google Scholar 

  29. P.M. Shafi, A.C. Bose, Impact of crystalline defects and size on x-ray line broadening: A phenomenological approach for tetragonal sno2 nanocrystals. AIP Advances 5(5), 057137 (2015). https://doi.org/10.1063/1.4921452

    Article  CAS  Google Scholar 

  30. V.K. Peterson, Lattice parameter measurement using le bail versus structural (rietveld) refinement: A caution for complex, low symmetry systems. Powder Diffraction 20(1), 14–17 (2005). https://doi.org/10.1154/1.1810156

    Article  CAS  Google Scholar 

  31. G.S. Pawley, Unit-cell refinement from powder diffraction scans. Journal of Applied Crystallography 14(6), 357–361 (1981). https://doi.org/10.1107/s0021889881009618

    Article  CAS  Google Scholar 

  32. M. Wolf, H. Rauschenbach, Series resistance effects on solar cell measurements. Advanced Energy Conversion 3(2), 455–479 (1963). https://doi.org/10.1016/0365-1789(63)90063-8

    Article  Google Scholar 

  33. K. Balashangar, M. Thanihaichelvan, P. Ravirajan, G.D.K. Mahanama, M.A.K.L. Dissanayake, E. Colegrove, R.G. Dhere, S. Sivananthan, The effect of surface roughness of substrates on the performance of polycrystalline cadmium sulfide/cadmium telluride solar cells. Journal of Nanoelectronics and Optoelectronics 10(4), 435–439 (2015). https://doi.org/10.1166/jno.2015.1777

    Article  CAS  Google Scholar 

  34. A. Zekry, A. Shaker, M. Salem, Solar Cells and Arrays. Elsevier (2018). https://doi.org/10.1016/b978-0-12-812959-3.00001-0

    Article  Google Scholar 

  35. M. Mostefaoui, H. Mazari, S. Khelifi, A. Bouraiou, R. Dabou, Simulation of high efficiency cigs solar cells with scaps-1d software. Energy Procedia 74, 736–744 (2015). https://doi.org/10.1016/j.egypro.2015.07.809

    Article  CAS  Google Scholar 

  36. L.I. Nykyruy, R.S. Yavorskyi, Z.R. Zapukhlyak, G. Wisz, P. Potera, Evaluation of cds/cdte thin film solar cells: Scaps thickness simulation and analysis of optical properties. Optical Materials 92, 319–329 (2019). https://doi.org/10.1016/j.optmat.2019.04.029

    Article  CAS  Google Scholar 

  37. O.K. Simya, A. Mahaboobbatcha, K. Balachander, A comparative study on the performance of kesterite based thin film solar cells using scaps simulation program. Superlattices and Microstructures 82, 248–261 (2015). https://doi.org/10.1016/j.spmi.2015.02.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance from the Solar Edu-Training Project of the State Ministry of Skills Development, Vocational Education, Research and Innovation, Sri Lanka is gratefully acknowledged. Postgraduate Institute of Science (PGIS)-University of Peradeniya, Sri Lanka, Department of Physics, University of Peradeniya, Sri Lanka, Department of Physics and Electronics, University of Kelaniya, Sri Lanka and Department of Physics, University of Jaffna, Sri Lanka are acknowledged for instrumental as well as technical support provided.

Author information

Authors and Affiliations

Authors

Contributions

AAIL Conceptualization, Data Curation, Methodology, Investigation, Formal analysis, Writing–Original Draft. RKKGRGK Data curation, Methodology. VAS Supervision, Writing–Review & Editing. MT Resources, Writing–Review & Editing. BSD Conceptualization, Supervision, Writing–Review & Editing, Project administration.

Corresponding author

Correspondence to B. S. Dassanayake.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakmal, A.A.I., Kumarasinghe, R.K.K.G.R.G., Seneviratne, V.A. et al. Effect of CdS Layer Thickness on Thermally Evaporated-CdS/CdTe Solar Cell Efficiency. J Mater Sci: Mater Electron 33, 15627–15637 (2022). https://doi.org/10.1007/s10854-022-08467-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08467-4

Navigation