Skip to main content

Advertisement

Log in

Controlling defects to improve the emission intensity of NaMgBO3:1%Ce3+ blue-cyan phosphor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The luminescence performance of Na0.99+nMg1 − mBO3:1%Ce3+ (m = 0–0.05, n = 0.025–0.04) phosphors were optimized by controlling the defect concentration. Its crystal structure, morphology, and luminescence properties have been investigated. After reducing the Mg content to introduce vacancies, the emission peak position of NaMg1 − mBO3:1%Ce3+ (m = 0–0.05) is located at 464 nm, and the intensity is increased by 21.3%. With the addition of excessive Na2CO3, the luminescence is finally increased by 27.1%. This is mainly contributed to vacancies can play the role in energy transfer, and excessive Na2CO3 acts both as a flux and promotes the formation of defects, thus enhancing luminescence. The mechanism of luminescence intensity enhancement is represented by the energy level transition diagram. All the results show that this phosphor can be used as an excellent blue-cyan phosphor to compensate for the blue-cyan gap, and realize the possibility of full spectrum lighting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated during this study are included in this published article.

References

  1. Q. Zhang, X. Wang, Y. Wang, Design of a broadband cyan-emitting phosphor with robust thermal stability for high-power WLED application[J]. J. Alloys Compd. 886, 161217 (2021)

    Article  CAS  Google Scholar 

  2. D. Zhang, X. Zhang, Z. An et al., Photoluminescence and color-tunable properties of Na4Ca4Mg21(PO4)18:Eu2+, Tb3+/Mn2+ phosphors for applications in white LEDs[J]. Inorg. Chem. 59(19), 14193–14206 (2020)

    Article  CAS  Google Scholar 

  3. Q. Zhang, X. Wang, Y. Wang, Full-visible-spectrum lighting realized by a novel Eu2+-doped cyan-emitting borosilicate phosphor[J]. CrystEngComm 22(28), 4702–4709 (2020)

    Article  CAS  Google Scholar 

  4. J. Zhao, Y. Liang, L. Guan et al., From blue to cyan emission: Ce3+ and Tb3+ co-doped silicon phosphate phosphors with high thermal stability[J]. Phys. Chem. Chem. Phys. 22(17), 9405–9414 (2020)

    Article  CAS  Google Scholar 

  5. Y. Li, Y. Shao, W. Zhang et al., Bismuth-activated, narrow‐band, cyan garnet phosphor Ca3Y2Ge3O12:Bi3+ for near‐ultraviolet‐pumped white LED application[J]. J. Am. Ceram. Soc. 104(12), 6299–6308 (2021)

    Article  CAS  Google Scholar 

  6. J. Yan, Z. Zhang, D. Wen et al., Crystal structure and photoluminescence tuning of novel single-phase Ca8ZnLu(PO4)7:Eu2+, Mn2+ phosphors for near-UV converted white light-emitting diodes[J]. J. Mater. Chem. C 7(27), 8374–8382 (2019)

    Article  CAS  Google Scholar 

  7. M. Rajendran, S.K. Samal, S. Vaidyanathan, A novel self-activated (bluish-green) and Eu3+ doped (red) phosphors for warm white LEDs[J]. J. Alloys Compd. 815, 152631 (2020)

    Article  CAS  Google Scholar 

  8. P. Huang, Y. Zhao, J. Wang et al., Tunable chromaticity and high color rendering index of WLEDs with CaAlSiN3:Eu2+ and YAG:Ce3+ dual phosphor-in‐silica‐glass[J]. J. Am. Ceram. Soc. 103(9), 4989–4998 (2020)

    Article  CAS  Google Scholar 

  9. Z. Zhang, B. Devakumar, S. Wang et al., Using an excellent near-UV-excited cyan-emitting phosphor for enhancing the color rendering index of warm-white LEDs by filling the cyan gap[J]. Mater. Today Chem. 20, 100471 (2021)

    Article  CAS  Google Scholar 

  10. Z. Leng, D. Zhang, H. Bai et al., Site occupancy and photoluminescence properties of cyan-emitting K2Ca2Si2O7:Bi3+ phosphor for white light emitting diodes[J]. Opt. Mater. 118, 111293 (2021)

    Article  CAS  Google Scholar 

  11. J. Liang, L. Sun, S. Wang et al., Filling the cyan gap toward full-visible-spectrum LED lighting with Ca2LaHf2Al3O12:Ce3+ broadband green phosphor[J]. J. Alloys Compd. 836, 155469 (2020)

    Article  CAS  Google Scholar 

  12. J. Xue, H.M. Noh, B.C. Choi et al., Dual-functional of non-contact thermometry and field emission displays via efficient Bi3+→Eu3+ energy transfer in emitting-color tunable GdNbO4 phosphors[J]. Chem. Eng. J. 382, 122861 (2020)

    Article  CAS  Google Scholar 

  13. L. Liu, L. Chen, R. Wang et al., Tuning luminescence of Ba3Si6O12N2:Eu2+ phosphor for full-spectrum warm white LED lighting[J]. J. Alloys Compd. 869, 159377 (2021)

    Article  CAS  Google Scholar 

  14. S.A. Khan, N.Z. Khan, I. Mehmood et al., Broad band white-light-emitting Y5Si3O12N:Ce3+/Dy3+ oxonitridosilicate phosphors for solid state lighting applications[J]. J. Lumin. 229, 117687 (2021)

    Article  CAS  Google Scholar 

  15. J. Liang, B. Devakumar, L. Sun et al., Full-visible-spectrum lighting enabled by an excellent cyan-emitting garnet phosphor[J]. J. Mater. Chem. C 8(14), 4934–4943 (2020)

    Article  CAS  Google Scholar 

  16. S. Wang, Q. Sun, B. Devakumar et al., Ce3+-activated CaSr2Al2O6 green-emitting phosphors: potential application as color converter for warm WLEDs[J]. J. Lumin. 206, 571–577 (2019)

    Article  CAS  Google Scholar 

  17. J. Zhong, Y. Zhuo, S. Hariyani et al., Closing the cyan gap toward full-spectrum LED lighting with NaMgBO3:Ce3+[J]. Chem. Mater. 32(2), 882–888 (2019)

    Article  CAS  Google Scholar 

  18. J. Xue, Z. Yu, H.M. Noh et al., Ce3+/Tb3+-coactived NaMgBO3 phosphors toward versatile applications in white LED, FED, and optical anti-counterfeiting[J]. J. Am. Ceram. Soc. 104(10), 5086–5098 (2021)

    Article  CAS  Google Scholar 

  19. B. Adamczyk, T. Jüstel, J. Plewa et al., The influence of Na2CO3 flux on photoluminescence properties of SrSi2O2N2:Eu2+ phosphor[J]. Ceram. Int. 43(15), 12381–12387 (2017)

    Article  CAS  Google Scholar 

  20. C. Tao, P. Li, N. Zhang et al., Improvement the luminescent property of Y3Al5O12:Ce3+ by adding the different fluxing agents for white LEDs[J]. Optik 179, 632–640 (2019)

    Article  CAS  Google Scholar 

  21. L. Wu, Y. Zhang, Y. Kong et al., Structure determination of novel orthoborate NaMgBO3: a promising birefringent crystal[J]. Inorg. Chem. 46(13), 5207–5211 (2007)

    Article  CAS  Google Scholar 

  22. J. Zhong, Y. Zhuo, H. Zhang et al., Understanding the β–K2CO3-Type Na(Na0.5Sc0.5)BO3:Ce3+ phosphor[J]. ECS J. Solid State Sci. Technol. 10(9), 096014 (2021)

    Article  CAS  Google Scholar 

  23. N. Zhou, L. Liu, Z. Zhou et al., Engineering cation vacancies to improve the luminescence properties of Ca14Al10Zn6O35:Mn4+ phosphors for LED plant lamp[J]. J. Am. Ceram. Soc. 103(3), 1798–1808 (2020)

    Article  CAS  Google Scholar 

  24. X. Min, M. Hu, Y. Yang et al., Effects of fluxes on preparation and luminescence properties of CaSi2O2N2:Eu2+ phosphors[J]. Opt. Mater. 117, 111203 (2021)

    Article  CAS  Google Scholar 

  25. S.M. Rafiaei, Effect of flux compounds on the luminescence properties of Eu3+ doped YBO3 phosphors[J]. Mater. Sci.-Poland 34(4), 780–785 (2016)

    Article  CAS  Google Scholar 

  26. Q. Dong, J. Yang, J. Cui et al., A narrow-band ultra-bright green phosphor for LED-based applications[J]. Dalton Trans. 49(6), 1935–1946 (2020)

    Article  CAS  Google Scholar 

  27. C. Yan, W. Zhuang, R. Liu et al., Dehydrogenation-driven to synthesize high-performance Lu2Si4N6C:Ce3+-a broad green-emitting phosphor for full-spectrum lighting[J]. J. Alloys Compd. 783, 855–862 (2019)

    Article  CAS  Google Scholar 

  28. D. Liu, X. Yun, G. Li et al., Enhanced cyan emission and optical tuning of Ca3Ga4O9:Bi3+ for high-quality full‐spectrum white light‐emitting diodes[J]. Adv. Opt. Mater. 8(22), 2001037 (2020)

    Article  CAS  Google Scholar 

  29. P. Lohe, D. Nandanwar, P. Belsare et al., Cyan emitting Ca3Sc2Si1.5Ge1.5O12:Ce3+ phosphor with 10.4 ns lifetime[J]. J. Lumin. 216, 116744 (2019)

    Article  CAS  Google Scholar 

  30. C. Li, X.-M. Wang, F.-F. Chi et al., A narrow-band blue emitting phosphor Ca8Mg7Si9N22:Eu2+ for pc-LEDs[J]. J. Mater. Chem. C 7(13), 3730–3734 (2019)

    Article  CAS  Google Scholar 

  31. X. Li, X. Wang, R. Hu et al., Modulating trap levels via co-doping Ca2+/Si4+ in LiTaO3:Pr3+ to improve both the intensity and threshold of mechanoluminescence[J]. J. Alloys Compd. 896, 162877 (2022)

    Article  CAS  Google Scholar 

  32. X. Wu, L. Liu, M. Xia et al., Enhance the luminescence properties of Ca14Al10Zn6O35:Ti4+ phosphor via cation vacancies engineering of Ca2+ and Zn2+[J]. Ceram. Int. 45(8), 9977–9985 (2019)

    Article  CAS  Google Scholar 

  33. H. Yi, L. Wu, L. Wu et al., Crystal structure of high-temperature phase β-NaSrBO3 and photoluminescence of β-NaSrBO3:Ce3+[J]. Inorg. Chem. 55(13), 6487–6495 (2016)

    Article  CAS  Google Scholar 

  34. M. Xia, W. Zhao, J. Zhong et al., Tunable luminescence of blue-green emitting NaBaBO3:Ce3+, Tb3+ phosphors for near-UV light emitting diodes[J]. J. Lumin. 220, 116957 (2020)

    Article  CAS  Google Scholar 

  35. S. You, Y. Zhuo, Q. Chen et al., Dual-site occupancy induced broadband cyan emission in Ba2CaB2Si4O14:Ce3+[J]. J. Mater. Chem. C 8(44), 15626–15633 (2020)

    Article  CAS  Google Scholar 

  36. H. Li, Y. Liang, S. Liu et al., Highly efficient green-emitting phosphor Sr4Al14O25:Ce, Tb with low thermal quenching and wide color gamut upon UV-light excitation for backlighting display applications[J]. J. Mater. Chem. C 9(7), 2569–2581 (2021)

    Article  CAS  Google Scholar 

  37. Q. Meng, Q. Zhu, X. Li et al., New Mg2+/Ge4+-Stabilized Gd3MgxGexAl5-2xO12:Ce garnet phosphor with orange-yellow emission for warm-white LEDs (x = 2.0–2.5)[J]. Inorg. Chem. 60(13), 9773–9784 (2021)

    Article  CAS  Google Scholar 

  38. W.R. Liu, C.H. Huang, C.P. Wu et al., High efficiency and high color purity blue-emitting NaSrBO3:Ce3+ phosphor for near-UV light-emitting diodes[J]. J. Mater. Chem. 21(19), 6869–6874 (2011)

    Article  CAS  Google Scholar 

  39. S. Wang, B. Devakumar, Q. Sun et al., Highly efficient near-UV-excitable Ca2YHf2Al3O12:Ce3+, Tb3+ green-emitting garnet phosphors with potential application in high color rendering warm-white LEDs[J]. J. Mater. Chem. C 8(13), 4408–4420 (2020)

    Article  CAS  Google Scholar 

  40. R. Cao, Y. Jiao, X. Wang et al., Tunable emission properties of CaTiSiO5:Ce3+, Mn2+ phosphor via efficient energy transfer[J]. J. Electron. Mater. 49(6), 3869–3876 (2020)

    Article  CAS  Google Scholar 

  41. J. Zhong, W. Zhao, Y. Zhuo et al., Understanding the blue-emitting orthoborate phosphor NaBaBO3:Ce3+ through experiment and computation[J]. J. Mater. Chem. C 7(3), 654–662 (2019)

    Article  CAS  Google Scholar 

  42. Y. Wei, H. Yang, Z. Gao et al., Anti-thermal-quenching Bi3+ luminescence in a cyan-emitting Ba2ZnGe2O7: bi phosphor based on zinc vacancy[J]. Laser Phot. Rev. 15(1), 2000048 (2021)

    Article  CAS  Google Scholar 

  43. P. Lohe, D. Nandanwar, P. Belsare et al., Colour tuning of garnet phosphor through codoping[J]. J. Lumin. 235, 118017 (2021)

    Article  CAS  Google Scholar 

  44. X. Wang, Z. Qiu, Y. Liang et al., Achieving dynamic multicolor luminescence in ZnS:KBr, Mn2+ phosphor for anti-counterfeiting[J]. Chem. Eng. J. 429, 132537 (2022)

    Article  CAS  Google Scholar 

  45. H. Yan, Z. Qiu, J. Zhang et al., Cation vacancy repair towards a new yellow Ca7Sr3Na(PO4)7:Eu2+ phosphor[J]. Ceram. Int. 45(14), 16963–16968 (2019)

    Article  CAS  Google Scholar 

  46. S. Kumar, N. Kottam, R. Preetham et al., Role of NH4Cl as flux on photoluminescence properties of Ca1-xZrO3:Eux (x = 0.05) Synthesized by solution combustion route[J]. Asian J. Chem. 33(3), 686–690 (2021)

    Article  CAS  Google Scholar 

  47. H. Wang, F. Mao, Y. Liu et al., Effect of fluxes on luminescence properties of color-tunable Ba1.3Ca0.7SiO4:Eu2+, Mn2+ Phosphor for near-ultraviolet white-LEDs[J]. Mater. Res. Bull. 125, 110808 (2020)

    Article  CAS  Google Scholar 

  48. P. Dang, S. Liang, G. Li et al., Controllable optical tuning and improvement in Li+, Eu3+-codoped BaSc2O4:Bi3+ based on energy transfer and charge compensation[J]. J. Mater. Chem. C 6(24), 6449–6459 (2018)

    Article  CAS  Google Scholar 

  49. F. Liao, Y. Zhang, J. Hu, Enhancement of green emission from Ca14Al10Zn6O35:Tb3+ phosphors via cross-relaxation energy transfer by Li+ ions[J]. J. Lumin. 231, 117791 (2021)

    Article  CAS  Google Scholar 

  50. M. Jiao, L. Dong, Q. Xu et al., The structures and luminescence properties of Sr4Gd3Na3(PO4)6F2:Ce3+, Tb3+ green phosphors with zero-thermal quenching of Tb3+ for WLEDs[J]. Dalton Trans. 49(3), 667–674 (2020)

    Article  CAS  Google Scholar 

  51. N. Viswanath, G.K. Grandhi, H.J. Kim et al., A new persistent blue-emitting phosphor: Tailoring the trap density for enhancing the persistent time[J]. Appl. Mater. Today 18, 100518 (2020)

    Article  Google Scholar 

  52. V. Panse, S. Choubey, R. Pandey et al., Photoluminescence analytical study of Ce3+-activated blue-emitting SrAl12O19 lamp phosphors[C]. Macromolecular Symposia 2020, 2000099 (2020)

    Article  CAS  Google Scholar 

  53. C.R. Zheng, Q.S. Liu, Luminescent properties of a new cyan long afterglow phosphor CaSnO3:Lu3+[J]. RSC Adv. 9(58), 33596–33601 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive specific funding from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. QD: Design article, design experiments and summarize data; WZ: Complete the experiment and test and analyze the obtained samples, article writing; BT: Review the article and propose precise revisions; LH: Collect and analyze literature; All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qizheng Dong.

Ethics declarations

Conflict of interest

In this article, the author declares that there is no competitive interest relationship or personal relationship.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q., Zhang, W., Tian, B. et al. Controlling defects to improve the emission intensity of NaMgBO3:1%Ce3+ blue-cyan phosphor. J Mater Sci: Mater Electron 33, 15604–15616 (2022). https://doi.org/10.1007/s10854-022-08465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08465-6

Navigation