Skip to main content

Advertisement

Log in

Research on Bi contents addition into Sn–Cu-based lead-free solder alloy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work aimed to investigate the effects of some Bi additions (x = 0, 1, 3, and 5 wt%) added to Sn–2Cu solder alloy on its thermal properties, mechanical performance, and resistance to corrosion, which was investigated by using the Differential scanning calorimetry, Scanning electron microscope, Vickers Hardness Tester, Universal testing machine, Electrochemical workstation, and X-ray diffraction. The experimental results showed that doping 5 wt% Bi could reduce the melting point from 239.7 to 226.6 °C and the undercooling from 24.0 to 9.0 °C, which could improve the thermal properties. Moreover, the Bi addition could refine the microstructure and decrease the Cu6Sn5 IMC phases’ size. With the addition of 5 wt% Bi, the microhardness and tensile strength reached the highest value of 20.13 HV and 57.64 MPa, respectively, due to the solid solution strengthening and precipitation strengthening. The electrochemical corrosion behaviors were performed to use the potentiodynamic polarization and electrochemical impedance spectroscopy. The obtained results revealed that a dense passivation film was formed on the surface of Sn–2Cu–1Bi alloy to prevent the alloy from being further corroded, which had the lowest value of corrosion current density (0.034 μA·cm−2) and biggest value of total resistance (200.4 kΩ·cm2). Therefore, the Sn–2Cu–1Bi alloy had best corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data analyzed or generated in this study are available within this article.

References

  1. S. Cheng, C.M. Huang, M. Pecht, A review of lead-free solders for electronics applications. Microelectron. Reliab. 75, 77–95 (2017). https://doi.org/10.1016/j.microrel.2017.06.016

    Article  CAS  Google Scholar 

  2. M.A.A. Mohd-Salleh, A.M.M. Al-Bakri, M.H. Zan-Hazizi, F. Somidin, N.F.M. Alui, Z.A. Ahmad, Mechanical properties of Sn-0.7Cu/Si3Ni4 lead-free composite solder. Mater. Sci. Eng. A 556, 633–637 (2012). https://doi.org/10.1016/j.msea.2012.07.039

    Article  CAS  Google Scholar 

  3. X. Bi, X. Hu, Q. Li, Effect of Co addition into Ni film on shear strength of solder/Ni/Cu system: experimental and theoretical investigations. Mater. Sci. Eng. A 788, 139589 (2020). https://doi.org/10.1016/j.msea.2020.139589

    Article  CAS  Google Scholar 

  4. X. Hu, H. Xu, W. Chen, X. Jiang, Effects of ultrasonic treatment on mechanical properties and microstructure evolution of the Cu/SAC305 solder joints. J. Manuf. Process. 64, 648–654 (2021). https://doi.org/10.1016/j.jmapro.2021.01.045

    Article  Google Scholar 

  5. S.A. Belyakov, J.W. Xian, K. Sweatman, T. Nishimura, T. Akaiwa, C.M. Gourlay, Influence of bismuth on the solidification of Sn-0.7Cu-0.05Ni-xBi/Cu joints. J. Alloys Compds. 701, 321–334 (2017). https://doi.org/10.1016/j.jallcom.2016.12.404

    Article  CAS  Google Scholar 

  6. Y. Qiao, H. Ma, F. Yu, N. Zhao, Quasi-in-situ observation on diffusion anisotropy dominated asymmetrical growth of Cu-Sn IMCs under temperature gradient. Acta Mater. 217, 117168 (2021). https://doi.org/10.1016/j.actamat.2021.117168

    Article  CAS  Google Scholar 

  7. X. Chen, M. Li, X.X. Ren, A.M. Hu, D.L. Mao, Effect of small additions of alloying elements on the properties of Sn-Zn eutectic alloy. J. Electron. Mater. 35, 1734–1739 (2006). https://doi.org/10.1007/s11664-006-0227-5

    Article  CAS  Google Scholar 

  8. R.M. Shalaby, M. Kamal, E.A.M. Ali, M.S. Gumaan, Microstructural and mechanical characterization of melt spun process Sn-3.5Ag and Sn-3.5Ag-xCu lead-free solders for low cost electronic assembly. Mater. Sci. Eng. A 690, 446–452 (2017). https://doi.org/10.1016/j.msea.2017.03.022

    Article  CAS  Google Scholar 

  9. M.S. Gumaan, R.M. Shalaby, M.K. Mohammed Yousef, E.A.M. Ali, E.E. Abdel-Hady, Nickel effects on the structural and some physical properties of the eutectic Sn-Ag lead-free solder alloy. Solder. Surf. Mt. Technol. 31, 40–51 (2019). https://doi.org/10.1108/SSMT-03-2018-0009

    Article  Google Scholar 

  10. M.S. Gumaan, R.M. Shalaby, E.A.M. Ali, M. Kamal, Copper effects in mechanical, thermal and electrical properties of rapidly solidified eutectic Sn–Ag alloy. J. Mater. Sci.: Mater. Electron. 29, 8886–8894 (2018). https://doi.org/10.1007/s10854-018-8906-6

    Article  CAS  Google Scholar 

  11. S.R. Abbas, M.S. Gumaan, R.M. Shalaby, Chromium effects on the microstructural, mechanical and thermal properties of a rapidly solidified eutectic Sn-Ag alloy. Solder. Surf. Mt. Technol. 32, 137–145 (2020). https://doi.org/10.1108/SSMT-04-2019-0017

    Article  Google Scholar 

  12. P.L. Liu, J.K. Shang, Interfacial embrittlement by bismuth segregation in copper/tin–bismuth Pb-free solder interconnect. J. Mater. Res. 16, 1651–1659 (2001). https://doi.org/10.1016/S1359-6462(01)00670-4

    Article  CAS  Google Scholar 

  13. K. Suganuma, Advances in lead-free electronics soldering. Curr. Opin. Solid State Mater. Sci. 5, 55–64 (2011). https://doi.org/10.1016/S1359-0286(00)00036-X

    Article  Google Scholar 

  14. H. Wang, X. Hu, X. Jiang, Effects of Ni modified MWCNTs on the microstructural evolution and shear strength of Sn-3.0Ag-0.5Cu composite solder joints. Mater. Charact. 163, 110287 (2020). https://doi.org/10.1016/j.matchar.2020.110287

    Article  CAS  Google Scholar 

  15. R. Rashidi, H. Naffakh-Moosavy, Metallurgical physical, mechanical and oxidation behavior of lead-free chromium dissolved Sn-Cu-Bi solders. J. Mater. Res. Technol. 13, 1805–1825 (2021). https://doi.org/10.1016/j.jmrt.2021.05.055

    Article  CAS  Google Scholar 

  16. S. Chantaramanee, P. Sungkhaphaitoon, Influence of bismuth on microstructure, thermal properties, mechanical performance, and interfacial behavior of SAC305-xBi/Cu solder joints. Trans. Nonferrous Met. Soc. China 31, 1397–1410 (2021). https://doi.org/10.1016/S1003-6326(21)65585-1

    Article  CAS  Google Scholar 

  17. G. Zeng, S. Xue, L. Zhang, L. Gao, Recent advances on Sn-Cu solders with alloying elements: review. J. Mater. Sci.: Mater. Electron. 22, 565–578 (2011). https://doi.org/10.1007/s10854-011-0291-3

    Article  CAS  Google Scholar 

  18. G. Li, Y. Shi, H. Hao, Z. Xia, Y. Lei, F. Guo, Effect of phosphorus element on the comprehensive properties of Sn-Cu lead free solder. J. Alloys Compd. 491, 382–385 (2010). https://doi.org/10.1016/j.jallcom.2009.10.190

    Article  CAS  Google Scholar 

  19. E. Çadırlı, U. Böyük, S. Engin, H. Kaya, N. Maraslı, A. Ülgen, Experimental investigation of the effect of solidification processing parameters on the rod spacings in the Sn-1.2 wt.% Cu alloy. J. Alloys Compds. 486, 199–206 (2009). https://doi.org/10.1016/j.jallcom.2009.07.027

    Article  CAS  Google Scholar 

  20. Y.F. Gao, C.Q. Cheng, J. Zhao, L.H. Wang, X.G. Li, Electrochemical corrosion of Sn-0.75Cu solder joints in NaCl solution. Trans. Nonferrous Met. Soc. China 22, 977–982 (2012). https://doi.org/10.1016/S1003-6326(11)61273-9

    Article  CAS  Google Scholar 

  21. D. Li, P.P. Conway, C. Liu, Corrosion characterization of tin–lead and lead free solders in 3.5 wt.% NaCl solution. Corros. Sci. 50, 995–1004 (2008). https://doi.org/10.1016/j.corsci.2007.11.025

    Article  CAS  Google Scholar 

  22. W.R. Osório, E.S. Freitas, J.E. Spinelli, A. Garcia, Electrochemical behavior of a lead-free Sn–Cu solder alloy in NaCl solution. Corros. Sci. 80, 71–81 (2014). https://doi.org/10.1016/j.corsci.2013.11.010

    Article  CAS  Google Scholar 

  23. G. Liu, S. Khorsand, S. Ji, Electrochemical corrosion behaviour of Sn-Zn-xBi alloys used for miniature detonating cords. J. Mater. Sci. Technol. 35, 1618–1628 (2019). https://doi.org/10.1016/j.jmst.2019.03.026

    Article  CAS  Google Scholar 

  24. J. Cheng, X. Hu, Q. Li, X. Jiang, Influences of Ni addition into Cu-xNi alloy on the microstructure evolution and mechanical property of Sn-58Bi/Cu-xNi solder joint. Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-03483-9

    Article  Google Scholar 

  25. R. Sayyadi, H. Naffakh-Moosavy, Physical and mechanical properties of synthesized low Ag/lead-free Sn-Ag-Cu-xBi (x=0, 1, 2.5, 5 wt%) solders. Mater. Sci. Eng.: A 735, 367–377 (2018). https://doi.org/10.1016/j.msea.2018.08.071

    Article  CAS  Google Scholar 

  26. R. Sayyadi, H. Naffakh-Moosavy, The role of intermetallic compounds in controlling the microstructural, physical and mechanical properties of Cu-[Sn-Ag-Cu-Bi]-Cu solder joints. Sci. Rep. 9, 1–20 (2019). https://doi.org/10.1038/s41598-019-44758-3

    Article  CAS  Google Scholar 

  27. A.A. El-Daly, W.M. Desoky, A.F. Saad, N.A. Mansor, E.H. Lotfy, H.M. Abd-Elmoniem, H. Hashem, The effect of undercooling on the microstructure and tensile properties of hypoeutectic Sn-6.5Zn-xCu Pb-free solders. Mater. Des. 80, 152–162 (2015). https://doi.org/10.1016/j.matdes.2015.05.016

    Article  CAS  Google Scholar 

  28. X. Hu, Y. Li, Y. Liu, Z. Min, Developments of high strength Bi-containing Sn0.7Cu lead-free solder alloys prepared by directional solidification. J. Alloys Compds. 625, 241–250 (2015). https://doi.org/10.1016/j.jallcom.2014.10.205

    Article  CAS  Google Scholar 

  29. A.A. El-Daly, A.M. El-Taher, S. Gouda, Novel Bi-containing Sn-1.5Ag-0.7Cu lead-free solder alloy with further enhanced thermal property and strength for mobile products. Mater. Des. 65, 796–805 (2015). https://doi.org/10.1016/j.matdes.2014.10.006

    Article  CAS  Google Scholar 

  30. J. Zhao, L. Qi, X. Wang, L. Wang, Influence of Bi on microstructure evolution and mechanical properties in Sn-Ag-Cu lead-free solder. J. Alloys Compds. 375, 196–201 (2004). https://doi.org/10.1016/j.jallcom.2003.12.005

    Article  CAS  Google Scholar 

  31. M.H. Mahdavifard, M.F.M. Sabri, D.A. Shnawah, S.M. Said, I.A. Badruddin, S. Rozali, The effect of iron and bismuth addition on the microstructural, mechanical, and thermal properties of Sn-1Ag-0.5Cu solder alloy. Microelectron. Reliab. 55, 1886–1890 (2015). https://doi.org/10.1016/j.microrel.2015.06.134

    Article  CAS  Google Scholar 

  32. L. Yang, F. Sun, X. Li, Effect of Ni, Bi concentration on the microstructure and shear behavior of low-Ag SAC-Bi-Ni/Cu solder joints. J. Mater. Sci.: Mater. Electron. 25, 2627–2633 (2014). https://doi.org/10.1007/s10854-014-1921-3

    Article  CAS  Google Scholar 

  33. J. Shen, Y. Pu, D. Wu, Q. Tang, M. Zhao, Effects of minor Bi, Ni on the wetting properties, microstructures, and shear properties of Sn-0.7Cu lead-free solder joints. J. Mater. Sci.: Mater. Electron. 26, 1572–1580 (2015). https://doi.org/10.1007/s10854-014-2577-8

    Article  CAS  Google Scholar 

  34. J. Koo, J. Chang, Y.W. Lee, H.J. Hong, K.S. Kim, H.M. Lee, New Sn-0.7Cu-based solder alloys with minor alloying additions of Pd, Cr and Ca. J. Alloys Compds. 608, 126–132 (2014). https://doi.org/10.1016/j.jallcom.2014.03.194

    Article  CAS  Google Scholar 

  35. B. Ali, M.F.M. Sabri, S.M. Said, N.L. Sukiman, I. Jauhari, M.H. Mahdavifard, Microstructure and tensile properties of Fe and Bi added Sn-1Ag-05Cu solder alloy under high temperature environment. Microelectron. Reliab. 82, 171–178 (2018). https://doi.org/10.1016/j.microrel.2018.01.015

    Article  CAS  Google Scholar 

  36. M.I.I. Ramli, M.A.A. Mohd Salleh, H. Yasuda, J. Chaiprapa, K. Nogita, The effect of Bi on the microstructure, electrical, wettability and mechanical properties of Sn-0.7Cu-0.05Ni alloys for high strength soldering. Mater. Des. 186, 108281 (2020). https://doi.org/10.1016/j.matdes.2019.108281

    Article  CAS  Google Scholar 

  37. U.S. Mohanty, K.-L. Lin, Potentiodynamic polarization measurement of Sn-8.5Zn-xAl-0.5Ga alloy in 3.5% NaCl solution. J. Electrochem. Soc. 153, B319–B324 (2006). https://doi.org/10.1149/1.2209569

    Article  CAS  Google Scholar 

  38. H. Oulfajrite, A. Sabbar, M. Boulghallat, A. Jouaiti, R. Lbibb, A. Zrineh, Electrochemical behavior of a new solder material (Sn-In-Ag). Mater. Lett. 57, 4368–4371 (2003). https://doi.org/10.1016/S0167-577X(03)00326-4

    Article  CAS  Google Scholar 

  39. L.C. Tsao, Corrosion resistance of Pb-free and novel nano-composite solders in electronic packaging. Corros. Resist. 107, 132 (2012). https://doi.org/10.5772/33228

    Article  Google Scholar 

  40. L.C. Tsao, in 2009 International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), (2009), pp. 1164–1166

  41. D.Q. Yu, C.M.L. Wu, L. Wang, in 16th International Corrosion Congress (Beijing, P.R. China, 2005), pp. 19–24

  42. D. Li, P.P. Conway, C. Liu, Corrosion characterization of tin–lead and lead free solders in 3.5wt.% NaCl solution. Corros. Sci. 50, 995–1004 (2008). https://doi.org/10.1016/j.corsci.2007.11.025

    Article  CAS  Google Scholar 

  43. R. Mishra, R. Balasubramaniam, Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel. Corros. Sci. 46, 3019–3029 (2004). https://doi.org/10.1016/j.corsci.2004.04.007

    Article  CAS  Google Scholar 

  44. E. McCafferty, Validation of corrosion rates measured by the Tafel extrapolation method. Corros. Sci. 47, 3202–3215 (2005). https://doi.org/10.1016/j.corsci.2005.05.046

    Article  CAS  Google Scholar 

  45. X. Bi, Z. Luo, B. Liu, M. Xu, Z. Wang, Enhancing interfacial reliability of metal-thermoplastic hybrid joints via adding carbon fiber and adjusting welding heat input. ACS Appl. Mater. Interfaces 13, 33722–33733 (2021). https://doi.org/10.1021/acsami.1c08977

    Article  CAS  Google Scholar 

  46. H.W. Pickering, Characteristic features of alloy polarization curves. Corros. Sci. 23, 1107–1120 (1983). https://doi.org/10.1016/0010-938X(83)90092-6

    Article  CAS  Google Scholar 

  47. S. Hong, W. Chen, Y. Zhang, H.Q. Luo, M. Li, N.B. Li, Investigation of the inhibition effect of trithiocyanuric acid on corrosion of copper in 3.0 wt.% NaCl. Corros. Sci. 66, 308–314 (2013). https://doi.org/10.1016/j.corsci.2012.09.034

    Article  CAS  Google Scholar 

  48. W.R. Osório, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto, A. Garcia, Microstructure, corrosion behaviour and microhardness of a directionally solidified Sn–Cu solder alloy. Electrochim. Acta 56, 8891–8899 (2011). https://doi.org/10.1016/j.electacta.2011.07.114

    Article  CAS  Google Scholar 

  49. H.A. Acciari, A.C. Guastaldi, C.M.A. Brett, Corrosion of the component phases presents in high copper dental amalgams. Application of electrochemical impedance spectroscopy and electrochemical noise analysis. Corros. Sci. 47, 635–647 (2005). https://doi.org/10.1016/j.corsci.2004.07.004

    Article  CAS  Google Scholar 

  50. M.C. Liew, L. Ahmad, M.L. Liu, M.F.M. Nazeri, H. Haliman, A.A. Mohamad, Corrosion behavior of Sn-3.0Ag-0.5Cu lead-free solder in potassium hydroxide electrolyte. Metall. Mater. Trans. A 43, 3742–3747 (2012). https://doi.org/10.1007/s11661-012-1194-5

    Article  CAS  Google Scholar 

  51. D. Xia, S. Song, R. Zhu, Y. Behnamian, C. Shen, J. Wang, J. Luo, Y. Lu, S. Klimas, A mechanistic study on thiosulfate-enhanced passivity degradation of Alloy 800 in chloride solutions. Electrochim. Acta 111, 510–525 (2013). https://doi.org/10.1016/j.electacta.2013.08.030

    Article  CAS  Google Scholar 

  52. D.-Q. Yu, C.M.L. Wu, L. Wang, The electrochemical corrosion behavior of Sn-9Zn and Sn-8Zn-3Bi lead-free solder alloys in NaCl solution. In 16th International Corrosion Congress. (Beijing, China, 2005), pp. 19–24

  53. E.J. Sutow, D.W. Jones, G.C. Hall, C.G. Owen, Crevice corrosion products of dental amalgam. J. Dent. Res. 70, 1082–1087 (1991). https://doi.org/10.1177/00220345910700071301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52165047).

Author information

Authors and Affiliations

Authors

Contributions

HH: Studying conception and design, Sample preparation, Experiments, Data curation and analysis, Writing—original draft. BC: Data curation, Investigation, Visualization. XH: Methodology, Writing—review & editing. XJ and QL: Resources, Supervision, Investigation, Validation. YC and SZ: Investigation, Formal analysis. DL: Resources, Investigation, Methodology.

Corresponding author

Correspondence to Xiaowu Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Chen, B., Hu, X. et al. Research on Bi contents addition into Sn–Cu-based lead-free solder alloy. J Mater Sci: Mater Electron 33, 15586–15603 (2022). https://doi.org/10.1007/s10854-022-08464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08464-7

Navigation