Skip to main content
Log in

Highly transparent oxide-based ultraviolet photodetectors for flexible electronics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flexible ultraviolet (UV) photodetectors have attracted great interests for applications in portable and wearable optoelectronic systems. In this work, highly visible-transparent and flexible UV photodetectors based on nanocrystalline zinc oxide (ZnO) films were developed on polyimide substrates by utilizing radio frequency magnetron sputtering and shadow mask deposition. The crystallinity and surface morphology of the ZnO films have been optimized at the substrate temperature of 200 °C. The flexible photodetector exhibited an average transmittance over 85% in the visible spectral range and a large photo-to-dark current ratio of 1.2 × 104 under 360 nm UV illumination. Moreover, the detector demonstrated enhanced photoresponse performance with the rise and decay time of 3.24 s and 108.7 ms, respectively. The highest detectivity of the device reached 2.7 × 1011 cm Hz1/2/W at 5 V bias voltage under an UV illumination intensity of 0.38 mW/cm2. The realization of transparent oxide films-based UV photodetectors on flexible substrates provides potential to develop high-performance and large-scale wearable optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [Y. Li], upon reasonable request.

References

  1. H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Adv. Mater. 14, 158–160 (2002)

    Article  CAS  Google Scholar 

  2. C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, Nano Lett. 7, 1003–1009 (2007)

    Article  CAS  Google Scholar 

  3. E. Monroy, F. Omnes, F. Calle, Semicond. Sci. Technol. 18, R33–R51 (2003)

    Article  CAS  Google Scholar 

  4. H. Yu, E.A. Azhar, T. Belagodu, S. Lim, S. Dey, J. Appl. Phys. 111, 102806 (2012)

    Article  Google Scholar 

  5. Y. Wang, J. Cheng, M. Shahid, M. Zhang, W. Pan, RSC Adv. 7, 26220–26225 (2017)

    Article  CAS  Google Scholar 

  6. R. Liu, J. Si, Q. Lv, C. Xiao, Z. Di, L. Zhao, L. Wang, L. Zhang, J. Mater. Sci. 32, 21012–21020 (2021)

    CAS  Google Scholar 

  7. J.D. Strickley, J.L. Messerschmidt, M.E. Awad, T. Li, T. Hasegawa, D.T. Ha, H.W. Nabeta, P.A. Bevins, K.H. Ngo, M.M. Asgari, R.M. Nazarian, V.A. Neel, A.B. Jenson, J. Joh, S. Demehri, Nature 575, 519–522 (2019)

    Article  CAS  Google Scholar 

  8. V.T. Tran, Y. Wei, H. Yang, Z. Zhan, H. Du, Nanotechnology 28, 095204 (2017)

    Article  Google Scholar 

  9. D. Bouilly-Gauthier, C. Jeannes, Y. Maubert, L. Duteil, C. Queille-Roussel, N. Piccardi, C. Montastier, P. Manissier, G. Pierard, J.P. Ortonne, Br. J. Dermatol. 163, 536–543 (2010)

    Article  CAS  Google Scholar 

  10. M. Peng, Y. Liu, A. Yu, Y. Zhang, C. Liu, J. Liu, W. Wu, K. Zhang, X. Shi, J. Kou, J. Zhai, Z.L. Wang, ACS Nano 10, 1572–1579 (2016)

    Article  CAS  Google Scholar 

  11. Z. Liu, D. Zhao, T. Min, J. Wang, G. Chen, H.X. Wang, IEEE Electron Dev. Lett. 40, 1186–1189 (2019)

    Article  CAS  Google Scholar 

  12. B. Sun, Y. Sun, C. Wang, Small 14, 1703391 (2018)

    Article  Google Scholar 

  13. M. Peng, Y. Wang, Q. Shen, X. Xie, H. Zheng, W. Ma, Z. Wen, X. Sun, Sci. China Mater. 62, 225–235 (2019)

    Article  CAS  Google Scholar 

  14. S.N. Das, K.-J. Moon, J.P. Kar, J.H. Choi, J. Xiong, T.I. Lee, J.-M. Myoung, Appl. Phys. Lett. 97, 022103 (2010)

    Article  Google Scholar 

  15. X. Yang, L. Hu, H. Deng, K. Qiao, C. Hu, Z. Liu, S. Yuan, J. Khan, H. Song, C. Cheng, Nano-Micro Lett. 9, 24 (2017)

    Article  Google Scholar 

  16. F. Li, W. Peng, Z. Pan, Y. He, Nano Energy 48, 27–34 (2018)

    Article  CAS  Google Scholar 

  17. C. Shan, M. Zhao, D. Jiang, J. Sun, Y. Duan, Q. Li, M. Li, X. Zhou, N. Wang, X. Fei, X. Zhao, J. Mater. Sci. 30, 15198–15205 (2019)

    CAS  Google Scholar 

  18. Y. Duan, M. Cong, D. Jiang, W. Zhang, X. Yang, C. Shan, X. Zhou, M. Li, Q. Li, Adv. Mater. Interfaces 16, 1900470 (2019)

    Article  Google Scholar 

  19. R. Bao, Y. Hu, Q. Yang, C. Pan, MRS Bull. 43, 952–958 (2018)

    Article  Google Scholar 

  20. G. Jang, S.J. Lee, D. Lee, W. Lee, J.M. Myoung, J. Mater. Chem. C 5, 4537–4542 (2017)

    Article  CAS  Google Scholar 

  21. J. Wang, C. Yan, M.F. Lin, K. Tsukagoshi, P.S. Lee, J. Mater. Chem. C 3, 596–600 (2015)

    Article  CAS  Google Scholar 

  22. K.M. Kang, H.H. Park, J. Phys. Chem. C 122, 377–385 (2018)

    Article  CAS  Google Scholar 

  23. J.Y. Lee, C.M. Shin, J.H. Heo, C.R. Kim, J.H. Park, T.M. Lee, H. Ryu, C.S. Son, B.C. Shin, W.J. Lee, Curr. Appl. Phys. 10, S290–S293 (2010)

    Article  Google Scholar 

  24. M.H. Jakob, S. Gutsch, C. Chatelle, A. Krishnaraja, J. Fahlteich, W. Weber, M. Zacharias, Phys. Status Solidi RRL 11, 1700123 (2017)

    Article  Google Scholar 

  25. M.G. Tsoutsouva, C.N. Panagopoulos, D. Papadimitriou, I. Fasaki, M. Kompitsas, Mater. Sci. Eng. B 176, 480–483 (2011)

    Article  CAS  Google Scholar 

  26. T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D.A. Golberg, Sensors 9, 6504–6529 (2009)

    Article  CAS  Google Scholar 

  27. M. Shahid, J. Cheng, T. Li, M.A. Khan, Y. Wang, Y. Hu, M. Zhang, J. Yang, H.S. Aziz, C. Wan, H. Nishijima, W. Pan, J. Mater. Chem. C 6, 6510–6519 (2018)

    Article  CAS  Google Scholar 

  28. D.B. Patel, M. Patel, K.R. Chauhan, J. Kim, M.S. Oh, J.W. Kim, Mater. Res. Bull. 97, 244–250 (2018)

    Article  CAS  Google Scholar 

  29. X. Gong, M.H. Tong, Y.G. Xia, W.Z. Cai, J.S. Moon, Y. Cao, G. Yu, C.L. Shieh, B. Nilsson, A.J. Heeger, Science 325, 1665 (2009)

    Article  CAS  Google Scholar 

  30. L.T. Dou, Y.M. Yang, J.B. You, Z. Hong, W.H. Chang, G. Li, Y. Yang, Nat. Commun. 5, 5404 (2014)

    Article  CAS  Google Scholar 

  31. X. Li, M. Zhu, M. Du, H. Zhu, Y. Fang, Small 12, 595–601 (2016)

    Article  CAS  Google Scholar 

  32. M. Shahid, Y. Wang, J. Yang, T. Li, J. Cheng, M. Zhang, Y. Xing, C. Wan, W. Pan, Adv. Mater. Interfaces 4, 1700909 (2017)

    Article  Google Scholar 

  33. Y. Dong, Y. Zou, J. Song, J. Li, B. Han, Q. Shan, L. Xu, J. Xue, H. Zeng, Nanoscale 9, 8580–8585 (2017)

    Article  CAS  Google Scholar 

  34. Y. Li, Y.H. Li, J. Chen, Z. Sun, Z. Li, X. Han, P. Li, X. Lin, R. Liu, Y. Ma, W. Huang, J. Mater. Chem. C 6, 11666–11672 (2018)

    Article  CAS  Google Scholar 

  35. J. Huang, B. Li, Y. Hu, X. Zhou, Z. Zhang, Y. Ma, K. Tang, L. Wang, Y. Lu, Surf. Coat. Technol. 362, 57–61 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Project of Shenzhen Science and Technology Innovation Committee (Grant No. JCYJ20180306170801080). The authors would like to thank Instrument Analysis Center of Xi’an Jiaotong University for the film properties characterization. The authors would also like to thank Mr. Xuan Zhu for the film samples preparation.

Funding

This work was supported by the Research Project of Shenzhen Science and Technology Innovation Committee (Grant No. JCYJ20180306170801080).

Author information

Authors and Affiliations

Authors

Contributions

YL contributed significantly to data analysis and wrote the manuscript, HM contributed to the data collection and discussions in the manuscript, WH contributed to constructive discussions, and YZ helped with constructive discussions.

Corresponding author

Correspondence to Yuanjie Li.

Ethics declarations

Conflict of interest

The authors declare no financial or non-financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ma, H., Hu, W. et al. Highly transparent oxide-based ultraviolet photodetectors for flexible electronics. J Mater Sci: Mater Electron 33, 15546–15553 (2022). https://doi.org/10.1007/s10854-022-08460-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08460-x

Navigation