Skip to main content
Log in

Enhanced magnetoelectric response of Mn-doped BiFeO3-based multiferroic ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Our previous work proposed that except for ferromagnetic and piezoelectric properties, mechanical quality factor is also an important parameter for high magnetoelectric response of BiFeO3-based multiferroic ceramics. In this work, in order to improve the mechanical quality factor of BiFeO3-based ceramics and obtain higher magnetoelectric response, we use Mn as a dopant and prepare 0.75BiFe1−xMnxO3-0.25BaTiO3 (x = 0, 0.0025, 0.005, 0.0075, 0.01) ceramics. The dielectric, piezoelectric, magnetic, and magnetoelectric properties of the ceramics with different Mn doping levels and different sintering temperatures are studied comprehensively. We find that the piezoelectric response, mechanical quality factor, ferromagnetic property, and magnetoelectric response can be improved by optimization of the composition and sintering temperature of the ceramics. A large magnetoelectric coefficient αE \(\sim\) 2 V/(cm Oe) is achieved at resonant frequency when doping content of Mn is 0.75 mol% and sintering temperature is 1030 \(\mathrm{^\circ{\rm C} }\). Such high value of αE is attributed to the combined effect of improved mechanical quality factor, high piezoelectric coefficient, and enhanced ferromagnetism. It is among the largest αE values obtained in single-phase BiFeO3-based ceramics. Moreover, our work further verifies the mechanical quality factor is an important parameter to achieve a high magnetoelectric response in BiFeO3-based ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Schmid, Ferroelectrics 162, 317 (1994). https://doi.org/10.1080/00150199408245120

    Article  Google Scholar 

  2. N.A. Spaldin, M. Fiebig, Science 309, 391 (2005). https://doi.org/10.1126/science.1113357

    Article  CAS  Google Scholar 

  3. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006). https://doi.org/10.1038/nature05023

    Article  CAS  Google Scholar 

  4. N.A. Spaldin, R. Ramesh, Nat. Mater. 18, 203 (2019). https://doi.org/10.1038/s41563-018-0275-2

    Article  CAS  Google Scholar 

  5. N. Ortega, A. Kumar, J.F. Scott, R.S. Katiyar, J. Phys. Condens. Matter. (2015). https://doi.org/10.1088/0953-8984/27/50/504002

    Article  Google Scholar 

  6. J. Ma, J. Hu, Z. Li, C.W. Nan, Adv. Mater. 23, 1062 (2011). https://doi.org/10.1002/adma.201003636

    Article  CAS  Google Scholar 

  7. V. Turchenko, A. Trukhanov, S. Trukhanov, M. Balasoiu, N. Lupu, J. Magn. Magn. Mater. 477, 9 (2019). https://doi.org/10.1016/j.jmmm.2018.12.101

    Article  CAS  Google Scholar 

  8. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskii, JETP Lett. 103, 100 (2016). https://doi.org/10.1134/s0021364016020132

    Article  CAS  Google Scholar 

  9. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, Ceram. Int. 44, 290 (2018). https://doi.org/10.1016/j.ceramint.2017.09.172

    Article  CAS  Google Scholar 

  10. A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, D.N. Chitanov, I.Y.S. Kazakevich, A.V. Trukhanov, V.A. Turchenko, M.M. Salem, Ceram. Int. 43, 5635 (2017). https://doi.org/10.1016/j.ceramint.2017.01.096

    Article  CAS  Google Scholar 

  11. V.A. Turchenko, S.V. Trukhanov, A.M. Balagurov, V.G. Kostishyn, A.V. Trukhanov, L.V. Panina, E.L. Trukhanova, J. Magn. Magn. Mater. 464, 139 (2018). https://doi.org/10.1016/j.jmmm.2018.05.036

    Article  CAS  Google Scholar 

  12. V. Turchenko, V.G. Kostishyn, S. Trukhanov, F. Damay, F. Porcher, M. Balasoiu, N. Lupu, B. Bozzo, I. Fina, A. Trukhanov, J. Waliszewski, K. Recko, S. Polosan, J. Alloys Compd. 821, 153412 (2020). https://doi.org/10.1016/j.jallcom.2019.153412

    Article  CAS  Google Scholar 

  13. O.S. Yakovenko, L.Y. Matzui, L.L. Vovchenko, V.V. Oliynyk, A.V. Trukhanov, S.V. Trukhanov, M.O. Borovoy, P.O. Tesel’ko, V.L. Launets, O.A. Syvolozhskyi, K.A. Astapovich, Appl. Nanosci. 10, 4747 (2020). https://doi.org/10.1007/s13204-020-01477-w

    Article  CAS  Google Scholar 

  14. O.S. Yakovenko, L.Y. Matzui, L.L. Vovchenko, A.V. Trukhanov, I.S. Kazakevich, S.V. Trukhanov, Y.I. Prylutskyy, U. Ritter, J. Mater. Sci. 52, 5345 (2017). https://doi.org/10.1007/s10853-017-0776-4

    Article  CAS  Google Scholar 

  15. L.Y. Matzui, A.V. Trukhanov, O.S. Yakovenko, L.L. Vovchenko, V.V. Zagorodnii, V.V. Oliynyk, M.O. Borovoy, E.L. Trukhanova, K.A. Astapovich, D.V. Karpinsky, S.V. Trukhanov, Nanomaterials (2019). https://doi.org/10.3390/nano9121720

    Article  Google Scholar 

  16. S.V. Trukhanov, A.V. Trukhanov, M.M. Salem, E.L. Trukhanova, L.V. Panina, V.G. Kostishyn, M.A. Darwish, A.V. Trukhanov, T.I. Zubar, D.I. Tishkevich, V. Sivakov, D.A. Vinnik, S.A. Gudkova, C. Singh, Ceram. Int. 44, 21295 (2018). https://doi.org/10.1016/j.ceramint.2018.08.180

    Article  CAS  Google Scholar 

  17. M.M. Salem, L.V. Panina, E.L. Trukhanova, M.A. Darwish, A.T. Morchenko, T.I. Zubar, S.V. Trukhanov, A.V. Trukhanov, Compos. B. Eng. 174, 107054 (2019). https://doi.org/10.1016/j.compositesb.2019.107054

    Article  CAS  Google Scholar 

  18. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009). https://doi.org/10.1002/adma.200802849

    Article  CAS  Google Scholar 

  19. J.M. Caicedo, J.A. Zapata, M.E. Gómez, P. Prieto, J. Appl. Phys. 103, 07E306 (2008). https://doi.org/10.1063/1.2839276

    Article  CAS  Google Scholar 

  20. J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, Integr. Ferroelectr. 126, 47 (2011). https://doi.org/10.1080/10584587.2011.574986

    Article  CAS  Google Scholar 

  21. O. García-Zaldívar, S. Díaz-Castañón, F.J. Espinoza-Beltran, M.A. Hernández-Landaverde, G. López, J. Faloh-Gandarilla, F. Calderón-Piñar, J. Adv. Dielectr. 5, 1550034 (2016). https://doi.org/10.1142/s2010135x15500344

    Article  Google Scholar 

  22. A.M. Kadomtseva, A.K. Zvezdin, Y.F. Popov, A.P. Pyatakov, G.P. Vorob’ev, JETP Lett. 79, 571 (2004). https://doi.org/10.1134/1.1787107

    Article  CAS  Google Scholar 

  23. A.S. Priya, I.B.S. Banu, S. Anwar, J. Magn. Magn. Mater. 401, 333 (2016). https://doi.org/10.1016/j.jmmm.2015.10.059

    Article  CAS  Google Scholar 

  24. X.X. Shi, X.Q. Liu, X.M. Chen, Adv. Funct. Mater. 27, 1604037 (2017). https://doi.org/10.1002/adfm.201604037

    Article  CAS  Google Scholar 

  25. M. Zhang, X. Zhang, X. Qi, H. Zhu, Y. Li, Y. Gu, Ceram. Int. 44, 21269 (2018). https://doi.org/10.1016/j.ceramint.2018.08.175

    Article  CAS  Google Scholar 

  26. E.V. Ramana, S.V. Suryanarayana, T.B. Sankaram, Solid State Sci. 12, 956 (2010). https://doi.org/10.1016/j.solidstatesciences.2010.02.009

    Article  CAS  Google Scholar 

  27. R. Gupta, J. Shah, S. Chaudhary, S. Singh, R.K. Kotnala, J. Nanopart. Res. 15, 2004 (2013). https://doi.org/10.1007/s11051-013-2004-8

    Article  CAS  Google Scholar 

  28. Z. Chu, H. Shi, W. Shi, G. Liu, J. Wu, J. Yang, S. Dong, Adv. Mater. 29, 1606022 (2017). https://doi.org/10.1002/adma.201606022

    Article  CAS  Google Scholar 

  29. Q. Pan, B.J. Chu, Chin. Phys. 29, 087501 (2020). https://doi.org/10.1088/1674-1056/ab9736

    Article  CAS  Google Scholar 

  30. Q. Pan, C. Fang, H. Luo, B. Chu, J. Eur. Ceram. Soc. 39, 1057 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.12.045

    Article  CAS  Google Scholar 

  31. S. Unruan, M. Unruan, T. Monnor, S. Priya, R. Yimnirun, X. Tan, J. Am. Ceram. Soc. 98, 3291 (2015). https://doi.org/10.1111/jace.13789

    Article  CAS  Google Scholar 

  32. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976). https://doi.org/10.1107/s0567739476001551

    Article  Google Scholar 

  33. A.R. Makhdoom, M.J. Akhtar, M.A. Rafiq, M.M. Hassan, Ceram. Int. 38, 3829 (2012). https://doi.org/10.1016/j.ceramint.2012.01.032

    Article  CAS  Google Scholar 

  34. H. Du, Z. Pei, W. Zhou, F. Luo, S. Qu, Mater. Sci. Eng. A 421, 286 (2006). https://doi.org/10.1016/j.msea.2006.01.095

    Article  CAS  Google Scholar 

  35. Y. Zhang, Y. Wang, J. Qi, Y. Tian, M. Sun, J. Zhang, T. Hu, M. Wei, Y. Liu, J. Yang, Nanomaterials 8, 711 (2018). https://doi.org/10.3390/nano8090711

    Article  CAS  Google Scholar 

  36. D.J. Kim, M.H. Lee, T.K. Song, J. Eur. Ceram. Soc. 39, 4697 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.07.013

    Article  CAS  Google Scholar 

  37. M.M. Niu, J. Liu, T.L. Sun, R.Z. Jiang, D.H. Hou, D. Xu, J. Alloys Compd. 859, 158224 (2021). https://doi.org/10.1016/j.jallcom.2020.158224

    Article  CAS  Google Scholar 

  38. R. Morineau, M. Paulus, IEEE Trans. Magn. (1975). https://doi.org/10.1109/TMAG.1975.1058882

    Article  Google Scholar 

  39. X.-H. Liu, Z. Xu, S.-B. Qu, X.-Y. Wei, J.-L. Chen, Ceram. Int. 34, 797 (2008). https://doi.org/10.1016/j.ceramint.2007.09.029

    Article  CAS  Google Scholar 

  40. S. Kim, W. Kim, M. Lee, T. Song, D. Do, J. Korean Phys. Soc. (2013). https://doi.org/10.3938/jkps.63.2325

    Article  Google Scholar 

  41. E.S. Ilton, J.E. Post, P.J. Heaney, F.T. Ling, S.N. Kerisit, Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2015.12.159

    Article  Google Scholar 

  42. Q. Pan, B. Chu, J. Appl. Phys. 125, 154102 (2019). https://doi.org/10.1063/1.5086343

    Article  CAS  Google Scholar 

  43. Y. Guo, P. Xiao, R. Wen, Y. Wan, Q. Zheng, D. Shi, K.H. Lam, M. Liu, D. Lin, J. Mater. Chem. C 3, 5811 (2015). https://doi.org/10.1039/c5tc00507h

    Article  CAS  Google Scholar 

  44. H. Wu, Y.B. Lin, J.J. Gong, F. Zhang, M. Zeng, M.H. Qin, Z. Zhang, Q. Ru, Z.W. Liu, X.S. Gao, J.M. Liu, J. Phys. D 46, 145001 (2013). https://doi.org/10.1088/0022-3727/46/14/145001

    Article  CAS  Google Scholar 

  45. G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Y.I. Bokhan, V.M. Laletin, Phys. Rev. B 64, 214408 (2001). https://doi.org/10.1103/PhysRevB.64.214408

    Article  CAS  Google Scholar 

  46. J.H. Ryu, S. Priya, A.V. Carazo, K. Uchino, H.E. Kim, J. Am. Ceram. Soc. 84, 2905 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01113.x

    Article  CAS  Google Scholar 

  47. A. Marzouki, H. Harzali, V. Loyau, P. Gemeiner, K. Zehani, B. Dkhil, L. Bessais, A. Megriche, Acta Mater. 145, 316 (2018). https://doi.org/10.1016/j.actamat.2017.11.055

    Article  CAS  Google Scholar 

  48. L. Luo, N. Jiang, X. Zou, D. Shi, T. Sun, Q. Zheng, C. Xu, K.H. Lam, D. Lin, Phys. Status Solidi (A) 212, 2012 (2015). https://doi.org/10.1002/pssa.201532127

    Article  CAS  Google Scholar 

  49. Y. Guo, T. Wang, D. Shi, P. Xiao, Q. Zheng, C. Xu, K.H. Lam, D. Lin, J. Mater. Sci-Mater. El. 28, 5531 (2016). https://doi.org/10.1007/s10854-016-6216-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Numbers: No. 51972297 and 51672261).

Funding

National Natural Science Foundation of China, Grant Nos. (51972297, 51672261).

Author information

Authors and Affiliations

Authors

Contributions

BC, RZ, XZ, and QP conceived the research. XZ prepared all the samples and carried out most of the experiments. XZ, XY, and ZW carried out the SEM measurements. XZ and BC analyzed the data and wrote the paper. All authors discussed the results and approved the final manuscript.

Corresponding authors

Correspondence to Baojin Chu or Ruzhong Zuo.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yang, X., Wang, Z. et al. Enhanced magnetoelectric response of Mn-doped BiFeO3-based multiferroic ceramics. J Mater Sci: Mater Electron 33, 15520–15532 (2022). https://doi.org/10.1007/s10854-022-08458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08458-5

Navigation