Skip to main content
Log in

Room temperature NO2 sensing performance enhancement of VO2(B) composited rGO structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The VO2(B)/rGO composite structure was proposed to improve the gas sensitivity response of VO2(B) at room temperature (25 °C) through replacing the homojunctions by heterojunctions. Pure VO2(B) nanorods were synthesized and composited with flake-shaped rGO by hydrothermal method. The nanorods show smooth surface and the average length is about 1 µm, the average width is about 100 nm. The composition of the samples is VO2(B) and is not affected by the rGO-additive during synthesis.VO2(B) nanorods were connected by sheet-like wrinkled graphene. The gas-sensing measurement of sensor with a NO2 concentration range of 1–5 ppm at room temperature was carried out. The response value of VO2(B)/rGO sensor to 5 ppm NO2 is improved by 23% and can reach up to 1.63 with increasing the rGO concentration. The sensor also shows good selectivity and reproducibility to NO2. The improvement of room temperature sensing performance is related to the multiple hetero-junctions formed by the rGO nanosheets. The mechanism of improving the gas sensitivity of the VO2(B)/rGO was further discussed. These results are significance for enhancement the performance of room temperature NO2 sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. J.L. Domingo, J. Rovira, Environ. Res. 187, 109650 (2020)

    Article  CAS  Google Scholar 

  2. P. Zhou, Y. Shen, W. Lu, S. Zhao, T. Li, X. Zhong, B. Cui, D. Wei, Y. Zhang, J. Alloy. Compd. 828, 154395 (2020)

    Article  CAS  Google Scholar 

  3. H. Xu, M.K. Akbari, S. Kumar, F. Verpoort, S. Zhuiykov, Nanoscale 13(13), 300 (2021)

    Google Scholar 

  4. A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, Sens. Actuators B: Chem. 171(171), 25 (2012)

    Article  Google Scholar 

  5. A. Dey, Mater. Sci. Eng.: B 229, 206 (2018)

    Article  CAS  Google Scholar 

  6. Z. Li, Z. Lin, N. Wang, Y. Huang, J. Wang, W. Liu, Y. Fu, Z. Wang, Mater. Design 110, 532 (2016)

    Article  CAS  Google Scholar 

  7. Z. Zhang, M. Haq, Z. Wen, Z. Ye, L. Zhu, Appl. Surf. Sci. 434, 891 (2018)

    Article  CAS  Google Scholar 

  8. J. Liang, Q. Lou, W. Wu, K. Wang, C. Xuan, A.C.S. Appl, Mater. Inter 27, 31968 (2021)

    Article  Google Scholar 

  9. J. Liang, R. Yang, K. Zhu, M. Hu, J. Mater. Sci. Mater. El. 29, 3780 (2018)

    Article  CAS  Google Scholar 

  10. M. Li, M. Hu, D. Jia, S. Ma, Sens. Actuators B 186, 140 (2013)

    Article  CAS  Google Scholar 

  11. G. Jyoti, J. Varma, Alloy. Compd. 806, 1469 (2019)

    Article  CAS  Google Scholar 

  12. H. Yousefi, B. Hashemi, A. Mirzaei, H. Roshan, M. Sheikhi, Mat. Sci. Semicon. Proc. 117, 105172 (2020)

    Article  CAS  Google Scholar 

  13. Z. Wang, Y. Zhang, S. Liu, T. Zhang, Sens. Actuators B Chem. 222, 893 (2016)

    Article  CAS  Google Scholar 

  14. S. Li, Y. Cen, Q. Xiang, M.K. Aslam, B.B. Hu, W. Li, Y. Tang, Q. Yu, Y.P. Liu, C.G. Chen, J. Mater. Chem. A. 7, 1658 (2019)

    Article  CAS  Google Scholar 

  15. L.F. Guo, T. Li, Sens. Actuators B 255, 2258 (2018)

    Article  CAS  Google Scholar 

  16. G.H. Lu, L.E. Ocola, J.H. Chen, Appl. Phys. Lett. 94, 083111 (2009)

    Article  Google Scholar 

  17. H. Bai, H. Guo, J. Wang, Y. Dong, B. Liu, Z. Xie, F. Guo, D. Chen, R. Zhang, Y. Zheng, Sens. Actuators B 337, 129783 (2021)

    Article  CAS  Google Scholar 

  18. P. Cao, Y. Cai, D. Pawar, S.T. Navale, C. Rao, S. Han, Y. WanG, M. Fang, X. Liu, Y. Zeng, W. Liu, D. Zhu, Y. Lu, Chem. Eng. J. 401, 125491 (2020)

    Article  CAS  Google Scholar 

  19. Z.U. Abideen, J.H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Sens. Actuators B 2018, 255 (1884)

    Google Scholar 

  20. X. Zhu, Y. Guo, H. Ren, C. Gao, Y. Zhou, Sens. Actuators B Chem. 248, 560 (2017)

    Article  CAS  Google Scholar 

  21. D. Toloman, A. Popa, M. Stan, C. Socaci, A.R. Biris, G. Katona, F. Tudorache, I. Petrila, F. Iacomi, Appl. Surf. Sci. 402, 410 (2017)

    Article  CAS  Google Scholar 

  22. X. Liu, J.W. Li, J.B. Sun, X.T. Zhang, RSC Adv. 15, 73699 (2015)

    Article  Google Scholar 

  23. X. Wang, A. Marikutsa, M. Rumyantsev, A. Gaskov, A. Knotko, X. Li, IEEE Sens. J. 20, 4562 (2020)

    Article  CAS  Google Scholar 

  24. R. Jain, Y. Lei, R. Maric, Sens. Actuators B: Chem. 236, 163 (2016)

    Article  CAS  Google Scholar 

  25. J. Ri, X. Li, C. Shao, Y. Liu, C. Han, X. Li, Y. Liu, Sens. Actuators B: Chem. 317, 128194 (2020)

    Article  CAS  Google Scholar 

  26. J. Liang, K. Zhu, R. Yang, M. Hu, Ceram. Int. 44, 2261 (2018)

    Article  CAS  Google Scholar 

  27. G.D. Li, Y.B. Shen, P.F. Zhou, F.L. Hao, P. Fang, D.Z. Wei, D. Meng, X.G. San, Mater. Charact. 163, 110284 (2020)

    Article  CAS  Google Scholar 

  28. J. Liang, W. Wu, Q. Lou, K. Wang, C. Xuan, J. Alloy. Compd. 890, 161837 (2022)

    Article  CAS  Google Scholar 

  29. J. Liang, W. Li, J. Liu, M. Hu, J. Alloy. Compd. 687, 845 (2016)

    Article  CAS  Google Scholar 

  30. W. Zhang, M. Hu, X. Liu, N. Li, W. Yan, Acta Phys. Sin. 65(09), 27 (2016)

    Google Scholar 

  31. S. Han, H. Moon, M. Noh, J. Pyeon, Y. Shim, S. Nahm, J. Kim, K. Yoo, C. Kang, Sens. Actuators, B Chem. 241, 40 (2017)

    Article  CAS  Google Scholar 

  32. S. Bai, Y. Ma, X. Shu, J. Sun, Y. Feng, R. Luo, D. Li, A. Ghen, Ind. Eng. Chem. Res. 56, 2616 (2018)

    Article  Google Scholar 

  33. A.V. Grigorieva, E.A. Goodilin, A.V. Anikina, I.V. Kolesnik, Y.D. Tretyakov, Mendeleev Commun. 18, 71 (2008)

    Article  CAS  Google Scholar 

  34. B. Bhangare, N.S. Ramgir, A. Pathak, Mat. Sci. Semicon. Proc. 105, 104726 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61471264) and Science and Technology Program Project of Tianjin (Grant Nos. 21YDTPJC00110, 19ZXZNGX00060).

Funding

National Natural Science Foundation of China (Grant No. 61471264). Science and Technology Program Project of Tianjin (Grant Nos. 21YDTPJC00110, 19ZXZNGX00060).

Author information

Authors and Affiliations

Authors

Contributions

JL: conceptualization, methodology, writing—review and editing. WW: formal analysis, investigation, writing—original draft, visualization. QL, KW and CX: writing—review and editing.

Corresponding author

Correspondence to Jiran Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Wu, W., Lou, Q. et al. Room temperature NO2 sensing performance enhancement of VO2(B) composited rGO structure. J Mater Sci: Mater Electron 33, 15473–15482 (2022). https://doi.org/10.1007/s10854-022-08454-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08454-9

Navigation