Skip to main content
Log in

Structural and optical properties of Zn-deficient ZnGa2O4 nanoparticles hydrothermally synthesized at low temperature by rapid heating using microwaves

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Wide-bandgap ZnGa2O4 (ZGO) semiconductor nanoparticles with oxygen vacancies were prepared by a hydrothermal method via microwave heating at temperatures less than 120 °C using a domestic microwave with an irradiation time as short as 150 s. The effect of pH of the precursor solution on the structural and optical properties of the ZnGa2O4 nanoparticles was investigated. The solution pH hardly affected the ZnGa2O4 particle size; the sizes remained almost unchanged in the range from 4.98 ± 0.09 to 6.32 ± 0.07 nm as pH was varied between 5.2 and 7.0. However, with decreasing solution pH, the number of oxygen vacancies increased owing to the generation of zinc deficiencies in the ZnGa2O4 nanoparticles. Consequently, the bandgap increased with decreasing pH, reaching a maximum of 4.78 eV at pH 5.2, when the ZnO/Ga2O3 molar ratio in the nanoparticles was the lowest (= 0.18). Moreover, the photoluminescence intensity also increased with decreasing pH, without any spectral shift. The photoluminescence was not dominated by the quantum size effect, but by the number of oxygen vacancies. The rapid and low-temperature microwave-based synthesis strategy of ZnGa2O4 nanophosphors developed in this study is expected to provide an energy-saving method for producing nanoparticles with controlled optical properties, contributing to future optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Naka, T. Nakane, S. Ishii, M. Nakayama, A. Ohmura, F. Ishikawa, A. de Visser, H. Abe, T. Uchikoshi, Cluster glass transition and relaxation in the random spinel CoGa2O4. Phys. Rev. B 103(22), 224408 (2021). https://doi.org/10.1103/PhysRevB.103.224408

    Article  CAS  Google Scholar 

  2. S. Ishii, T. Nakane, S. Uchida, M. Yoshida, T. Naka, Influence of pH tuning at the precursor-preparation process on the structural characteristics and catalytic performance of hydrothermally synthesized ZnAl2O4 nanoparticles. J. Asian Ceram. Soc. 6(1), 7–12 (2018). https://doi.org/10.1080/21870764.2018.1439692

    Article  Google Scholar 

  3. A. Kruk, M. Schabikowski, M. Mitura-Nowak, T. Brylewski, Magnetic and electrical properties of Mn2CoO4 spinel. Physica B 596, 412402 (2020). https://doi.org/10.1016/j.physb.2020.412402

    Article  CAS  Google Scholar 

  4. C. Gajdowski, R. D’Elia, N. Faderl, J. Böhmler, Y. Lorgouilloux, S. Lemonnier, A. Leriche, Mechanical and optical properties of MgAl2O4 ceramics and ballistic efficiency of spinel based armour. Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.03.079

    Article  Google Scholar 

  5. C. Mével, J. Carreaud, G. Delaizir, J.-R. Duclère, F. Brisset, J. Bourret, P. Carles, C. Genevois, M. Allix, S. Chenu, First ZnGa2O4 transparent ceramics. J. Eur. Ceram. Soc. 41(9), 4934–4941 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.03.038

    Article  CAS  Google Scholar 

  6. E. Chikoidze, C. Sartel, I. Madaci, H. Mohamed, C. Vilar, B. Ballesteros, F. Belarre, E. del Corro, P. Vales-Castro, G. Sauthier, L.J. Li, M. Jennings, V. Sallet, Y. Dumont, A. Perez-Tomas, p-Type ultrawide-band-gap spinel ZnGa2O4: new perspectives for energy electronics. Cryst. Growth Des. 20(4), 2535–2546 (2020). https://doi.org/10.1021/acs.cgd.9b01669

    Article  CAS  Google Scholar 

  7. Y.E. Lee, D.P. Norton, C. Park, C.M. Rouleau, Blue photoluminescence in ZnGa2O4 thin-film phosphors. J. Appl. Phys. 89(3), 1653–1656 (2001). https://doi.org/10.1063/1.1287228

    Article  CAS  Google Scholar 

  8. I.-K. Jeong, H.L. Park, S.-I. Mho, Two self-activated optical centers of blue emission in zinc gallate. Solid State Commun. 105(3), 179–183 (1998). https://doi.org/10.1016/S0038-1098(97)10101-6

    Article  CAS  Google Scholar 

  9. D. Zhang, C. Wang, Y. Liu, Q. Shi, W. Wang, Y. Zhai, Green and red photoluminescence from ZnAl2O4: Mn phosphors prepared by sol–gel method. J. Lumin. 132(6), 1529–1531 (2012). https://doi.org/10.1016/j.jlumin.2012.01.025

    Article  CAS  Google Scholar 

  10. X. Duan, F. Yu, Y. Wu, Synthesis and luminescence properties of ZnGa2O4 spinel doped with Co2+ and Eu3+ ions. Appl. Surf. Sci. 261, 830–834 (2012). https://doi.org/10.1016/j.apsusc.2012.08.112

    Article  CAS  Google Scholar 

  11. H.J. Byun, J.U. Kim, H. Yang, Blue, green, and red emission from undoped and doped ZnGa2O4 colloidal nanocrystals. Nanotechnology 20(49), 495602 (2009). https://doi.org/10.1088/0957-4484/20/49/495602

    Article  CAS  Google Scholar 

  12. X. Zhang, Y. Rao, Y. Liang, R. Deng, Z. Liu, S. Hark, Y. Yuen, S. Wong, Synthesis of octahedral ZnGa2O4 particles and their field-emission properties. J. Phys. D: Appl. Phys. 41(9), 095104 (2008). https://doi.org/10.1088/0022-3727/41/9/095104

    Article  CAS  Google Scholar 

  13. S. Itoh, H. Toki, Y. Sato, K. Morimoto, T. Kishino, The ZnGa2O4 phosphor for low-voltage blue cathodoluminescence. J. Electrochem. Soc. 138(5), 1509–1512 (1991). https://doi.org/10.1149/1.2085816

    Article  CAS  Google Scholar 

  14. J.Y. Kim, J.H. Kang, D.C. Lee, D.Y. Jeon, Preparation and characterization of ZnGa2O4 phosphor synthesized with an optimized combustion process. J. Vac. Sci. Technol. B 21(1), 532–535 (2003). https://doi.org/10.1116/1.1528168

    Article  CAS  Google Scholar 

  15. Z. Jiao, G. Ye, F. Chen, M. Li, J. Liu, The preparation of ZnGa2O4 nano crystals by spray coprecipitation and its gas sensitive characteristics. Sensors 2(3), 71–78 (2002). https://doi.org/10.3390/s20300071

    Article  CAS  Google Scholar 

  16. J. Liu, X. Duan, Y. Zhang, H. Jiang, Cation distribution and photoluminescence properties of Mn-doped ZnGa2O4 nanoparticles. J. Phys. Chem. Solids 81, 15–19 (2015). https://doi.org/10.1016/j.jpcs.2015.01.009

    Article  CAS  Google Scholar 

  17. M. Hirano, Hydrothermal synthesis and characterization of ZnGa2O4 spinel fine particles. J. Mater. Chem. 10(2), 469–472 (2000). https://doi.org/10.1039/A907509G

    Article  CAS  Google Scholar 

  18. M.M. Can, G. Hassnain Jaffari, S. Aksoy, S.I. Shah, T. Fırat, Synthesis and characterization of ZnGa2O4 particles prepared by solid state reaction. J. Alloy Compd. 549, 303–307 (2013). https://doi.org/10.1016/j.jallcom.2012.08.137

    Article  CAS  Google Scholar 

  19. A.R. Phani, S. Santucci, S. Di Nardo, L. Lozzi, M. Passacantando, P. Picozzi, C. Cantalini, Preparation and characterization of bulk ZnGa2O4. J. Mater. Sci. 33(15), 3969–3973 (1998). https://doi.org/10.1023/A:1004600913743

    Article  CAS  Google Scholar 

  20. M. Hirano, M. Imai, M. Inagaki, Preparation of ZnGa2O4 spinel fine particles by the hydrothermal method. J. Am. Ceram. Soc. 83(4), 977–979 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01310.x

    Article  CAS  Google Scholar 

  21. S. Ishii, T. Nakane, T. Furusawa, T. Naka, Synthesis of single-phase ZnAl2O4 nanoparticles via a wet chemical approach and evaluation of crystal structure characteristics. Cryst. Res. Technol. 51(5), 324–332 (2016). https://doi.org/10.1002/crat.201500297

    Article  CAS  Google Scholar 

  22. H.V.T. Luong, J.C. Liu, Flotation separation of gallium from aqueous solution—Effects of chemical speciation and solubility. Sep. Purif. Technol. 132, 115–119 (2014). https://doi.org/10.1016/j.seppur.2014.04.054

    Article  CAS  Google Scholar 

  23. H.Y. Playford, A.C. Hannon, M.G. Tucker, D.M. Dawson, S.E. Ashbrook, R.J. Kastiban, J. Sloan, R.I. Walton, Characterization of structural disorder in γ-Ga2O3. J. Phys. Chem. C 118(29), 16188–16198 (2014). https://doi.org/10.1021/jp5033806

    Article  CAS  Google Scholar 

  24. V. Vasanthi, M. Kottaisamy, V. Ramakrishnan, Near UV excitable warm white light emitting Zn doped γ-Ga2O3 nanoparticles for phosphor-converted white light emitting diode. Ceram. Int. 45(2), 2079–2087 (2019). https://doi.org/10.1016/j.ceramint.2018.10.111

    Article  CAS  Google Scholar 

  25. M. Hilfiker, M. Stokey, R. Korlacki, U. Kilic, Z. Galazka, K. Irmscher, S. Zollner, M. Schubert, Zinc gallate spinel dielectric function, band-to-band transitions, and Γ-point effective mass parameters. Appl. Phys. Lett. 118(13), 132102 (2021). https://doi.org/10.1063/5.0043686

    Article  CAS  Google Scholar 

  26. Y. Yuan, W. Du, X. Qian, ZnxGa2O3+x (0 ≤ x ≤ 1) solid solution nanocrystals: tunable composition and optical properties. J. Mater. Chem. 22(2), 653–659 (2012). https://doi.org/10.1039/C1JM13091A

    Article  CAS  Google Scholar 

  27. J.S. Kim, H.I. Kang, W.N. Kim, J.I. Kim, J.C. Choi, H.L. Park, G.C. Kim, T.W. Kim, Y.H. Hwang, S.I. Mho, M.-C. Jung, M. Han, Color variation of ZnGa2O4 phosphor by reduction-oxidation processes. Appl. Phys. Lett. 82(13), 2029–2031 (2003). https://doi.org/10.1063/1.1564632

    Article  CAS  Google Scholar 

  28. T.A. Safeera, R. Khanal, J.E. Medvedeva, A.I. Martinez, G. Vinitha, E.I. Anila, Low temperature synthesis and characterization of zinc gallate quantum dots for optoelectronic applications. J. Alloy. Compd. 740, 567–573 (2018). https://doi.org/10.1016/j.jallcom.2018.01.035

    Article  CAS  Google Scholar 

  29. L. Chen, Y. Liu, Z. Lu, K. Huang, Hydrothermal synthesis and characterization of ZnGa2O4 phosphors. Mater. Chem. Phys. 97(2), 247–251 (2006). https://doi.org/10.1016/j.matchemphys.2005.08.024

    Article  CAS  Google Scholar 

  30. H. Naito, S. Fujihara, T. Kimura, Blue emission of ZnGa2O4 nanoparticles dispersed in fluoride thin films via sol-gel process. J. SolGel Sci. Technol. 26(1), 997–1000 (2003). https://doi.org/10.1023/A:1020769631833

    Article  CAS  Google Scholar 

  31. C.R. Garcia, J. Oliva, L.A. Diaz-Torres, E. Montes, G. Hirata, J. Bernal-Alvarado, C. Gomez-Solis, Controlling the white phosphorescence ZnGa2O4 phosphors by surface defects. Ceram. Int. 45(4), 4972–4979 (2019). https://doi.org/10.1016/j.ceramint.2018.11.197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sample analysis was performed by Materials Analysis Station, National Institute for Materials Science (Japan). This work was partially supported by the Iketani Science and Technology Foundation (0321093-A) and the Research Institute for Science and Technology of Tokyo Denki University (Grant Number Q21K-04).

Funding

This work was partially supported by the Iketani Science and Technology Foundation (0321093-A) and the Research Institute for Science and Technology of Tokyo Denki University (Grant Number Q21K-04).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, UV–vis, and PL measurements were performed by SI, SS, and CK. XRD measurement was performed by MN and TN. TEM observation was performed by MY. The data analysis was performed by SI, SS, and CK. The first draft of the manuscript was written by SI. TN: reviewed and edited the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Satoshi Ishii.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 40 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishii, S., Suzuki, S., Kang, C. et al. Structural and optical properties of Zn-deficient ZnGa2O4 nanoparticles hydrothermally synthesized at low temperature by rapid heating using microwaves. J Mater Sci: Mater Electron 33, 15254–15262 (2022). https://doi.org/10.1007/s10854-022-08444-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08444-x

Navigation