Skip to main content
Log in

Influence of carboxylic acids on structural, optical, thermal, and electrical properties of ferroelectric glycine phosphite single crystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Glycine phosphite (GPI), a semi-organic nonlinear optical NLO material, has been synthesized at room temperature. Slow evaporation method has been adopted to grow the single crystals of GPI and acetic acid, benzoic acid, formic acid, oxalic acid, and succinic acid-doped GPI crystals. The synthesized crystals are exposed to x-ray diffraction XRD, Fourier transform infrared (FTIR), and differential scanning calorimetry analysis DSC. The effects of doping on the structural parameters are analyzed. All the functional groups are identified by the corresponding peaks in the FTIR spectra. The UV–Vis spectrum shows that the materials have good optical transparency. The energy band gap values are found to be in the range of 5.1–5.4 eV for all the crystals. The mechanical stability of the grown crystals changes with different doping acids. The thermal studies were also affected by the addition of doping acids to the GPI crystal. Growth patterns and defect formation were studied by means of chemical etching. The dielectric constant and loss were evaluated from 300 to 410 K. It confirms that the dielectric constant value of GPI is higher than the acid-doped crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on request.

References

  1. M.S. Pandian, N. Pattanaboonmee, P. Ramasamy, P. Manyum, J. Cryst. Growth, 314, 207 (2011).

  2. R. Perumal, K. Senthilkumar, S.M. Babu, G. Bhagavannarayana, J. Alloys Compd. 505, 268 (2010)

    Article  CAS  Google Scholar 

  3. A. Deepthy, H.L. Bhat, Ferroelectrics 269, 99 (2002)

    Article  CAS  Google Scholar 

  4. A. Deepthy, H.L. Bhat, J. Cryst. Growth 226, 287 (2001)

    Article  CAS  Google Scholar 

  5. S. Dacko, Z. Czapla, J. Baran, M. Drozd, J. Phys. Condens. Matter 8, 10647 (1996)

    Article  Google Scholar 

  6. C.P. Menon, J.Philip, A. Deepthy, H.L. Bhat, Mater. Res. Bull. 36, 2407 (2001).

  7. S. Sundari, P. Kanchane, N. Arunadevi, C. Shobana, Mater. Today Proc. 33, 2203 (2020).

  8. K. Senthilkumar, S.M. Babu, B. Kumar, Proc. Indian Natn Sci Acad. 79, 423 (2013).

  9. I.R. Zachek, R.R. Levitskii, A.S. Vdovych, I.V. Stasyuk, Condens. Matter. Phys. 20, 1 (2017)

    Google Scholar 

  10. J. Baran, M. Śledź, R. Jakubas, G. Bator, Phys. Rev. B 55, 169 (1997)

    Article  CAS  Google Scholar 

  11. S. Supriya, S. Kalainathan, Arch. Appl. Sci. Res. 2, 298 (2010)

    CAS  Google Scholar 

  12. S. Supriya, A.J. Dossantos-García, F. Fernández-Martinez, Mater. Lett. 128, 114 (2014).

  13. MTh. Averbuch-Pouchot, Acta Cryst. C. 49, 815 (1993)

    Article  Google Scholar 

  14. V. Natarajan, J.K. Sundar, P. Selvarajan, M. Arivanandhan, K. Sankaranarayanan, S. Natarajan, Y. Hayakawa, J. Miner. Mater. Charact. Eng. 10,1 (2011).

  15. R.E. Vizhi, S. Kalainathan, G.B. Narayana, Cryst. Res. Technol. 42, 1104 (2007).

  16. S. Kalainathan, M.B. Margaret, Mater. Sci. Eng. B. 120, 190 (2005).

  17. S. Suresh, D. Arivuoli, J. Optoelectron. Biomed. Mater. 3, 63 (2011)

    Google Scholar 

  18. M. Anis, G.G. Muley, M.I. Baig, S.S. Hussaini, M.D. Shirsat, Mater. Res. Innov. 21, 439 (2017).

  19. K. Sangwal, Cryst. Res. Technol. 44, 1019 (2009)

    Article  CAS  Google Scholar 

  20. V. Gupta, K.K. Bamzai, P.N. Kotru, B.M. Wanklyn, Mater. Chem. Phys. 89, 64 (2005)

    Article  CAS  Google Scholar 

  21. K.S. Upada, P.M. Rao, S. Aithal, A.P. Bhat, D.K. Avasthi, Bull. Mater. Sci. 20, 1069 (1997)

    Article  Google Scholar 

  22. M. Shakir, B.K. Singh, R.K. Gaur, B. Kumar, G. Bhagavannarayan, M.A. Wahab, Chalcogenide Lett. 6, 655 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R61), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. One of the authors SSS is grateful to the Department of Science and Technology, New Delhi, India, for the financial assistant thorough DST-WOS-A project (SR/WOS-A/PM/109/2016).

Author information

Authors and Affiliations

Authors

Contributions

All the authors of the current manuscript contributed equally.

Corresponding author

Correspondence to E. Ranjith Kumar.

Ethics declarations

Conflict of interest

There is no conflict of interest to the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundari, S.S., Arunadevi, N., Kanchana, P. et al. Influence of carboxylic acids on structural, optical, thermal, and electrical properties of ferroelectric glycine phosphite single crystals. J Mater Sci: Mater Electron 33, 17421–17433 (2022). https://doi.org/10.1007/s10854-022-08443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08443-y

Navigation