Skip to main content
Log in

Microstructure evolution of diamond with molybdenum coating and thermal conductivity of diamond/copper composites fabricated by spark plasma sintering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Molybdenum (Mo) coating was deposited on the diamond surface by vacuum micro-vapor deposition. Effects of deposition parameters on the formation of Mo coating on the diamond different crystal face was investigated. The mechanism of diamond metallization evolution, fracture mode and thermal conductivity of diamond/copper composites were discussed. It is shown that the coating of diamond particles is starting with point-like particles grew up to be continuous, dense spherical coating, and the compactness of the coating on diamond <100> facet always takes precedence over diamond <111> facet. The Mo coating on the diamond surface deposited at 1050 °C for 50 min shows the best quality. The fracture modes of Mo-coated diamond/copper composites are composed of diamond debonding from copper matrix, diamond transgranular fracture and copper ductile fracture, but some pores existed at the interfere, it concludes that the Mo2C prepare a Cu/Mo/diamondinterlayer between the diamond and copper matrix could improve the bonding between diamond and copper matrix, but the effect of Mo2C coating on strengthen the interfacial bonding is limited. The highest thermal conductivity of the composites achieved the value of 329 W/(m K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data available.

References

  1. S. Mallik, N. Ekere, C. Best, R. Bhatti, Investigation of thermal management materials for automotive electronic control units. Appl. Therm. Eng. 31(2–3), 355–362 (2011)

    Article  CAS  Google Scholar 

  2. L. Weber, R. Tavangar, On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites. Scripta. Mater. 57(11), 988–991 (2007)

    Article  CAS  Google Scholar 

  3. M. Wu, C.Z. Cao, U.D. Rafi, X.B. He, X.H. Qu, Brazing diamond/Cu composite to alumina using reactive Ag–Cu–Ti alloy. Trans. Nonferrous Met. Soc. China 23(06), 1701–1708 (2013)

    Article  CAS  Google Scholar 

  4. M.H. Chen, H.Z. Li, C.R. Wang, N. Wang, Z.Y. Li, L.N. Tang, Progress in heat conduction of diamond/Cu composites with high thermal conductivity. Rare Met. Mater. Eng. 49(12), 4146–4158 (2020)

    Google Scholar 

  5. Y.H. Dong, R.Q. Zhang, X.B. He, Z.G. Ye, X.H. Qu, Fabrication and infiltration kinetics analysis of Ti-coated diamond/copper composites with near-net-shape by pressureless infiltration. Mater. Sci. Eng. 177(17), 1524–1530 (2012)

    Article  CAS  Google Scholar 

  6. B. Shen, S.L. Chen, F.H. Sun, Effect of deposition temperature on properties of boron-doped diamond films on tungsten carbide substrate. Trans. Nonferrous Met. Soc. China 28(4), 729–738 (2018)

    Article  CAS  Google Scholar 

  7. J.M. Tao, X.K. Zhu, W.W. Tian, P. Yang, H. Yang, Properties and microstructure of Cu/diamond composites prepared by spark plasma sintering method. Trans. Nonferrous Met. Soc. China 24(10), 3210–3214 (2014)

    Article  CAS  Google Scholar 

  8. J.H. Jia, S.X. Bai, D.G. Xiong, J. Wang, J. Chang, Effect of tungsten based coating characteristics on microstructure and thermal conductivity of diamond/Cu composites prepared by pressueless infiltration. Ceram. Int. 45(8), 10810–10818 (2019)

    Article  CAS  Google Scholar 

  9. S.D. Ma, N.Q. Zhao, C.S. Shi, E.Z. Liu, C.N. He, F. He, L.Y. Ma, Mo2C, Coating on diamond: different effects on thermal conductivity of diamond/Al and diamond/Cu composites. Appl. Surf. Sci. 402, 372–383 (2017)

    Article  CAS  Google Scholar 

  10. A.M. Abyzov, M.J. Kruszewski, Ł Ciupiński, M. Mazurkiewicz, A. Michalski, K.J. Kurzydłowski, Diamond–tungsten based coating-copper composites with high thermal conductivity produced by Pulse Plasma Sintering. Mater. Des. 76, 97–109 (2015)

    Article  CAS  Google Scholar 

  11. J. Grzonka, M.J. Kruszewski, M. Rosiński, L. Ciupiński, A. Michalski, K.J. Kurzydłowski, Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route. Mater. Charact. 99, 188–194 (2015)

    Article  CAS  Google Scholar 

  12. J.W. Li, X.T. Wang, Y. Qiao, Y. Zhang, Z.B. He, H.L. Zhang, High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites. Scr. Mater. 109, 72–75 (2015)

    Article  CAS  Google Scholar 

  13. L. Ciupiński, M.J. Kruszewski, J. Grzonka, M. Chmielewski, R. Zielińsk, D. Moszczyńska, A. Michalski, Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications. Mater. Des. 120, 170–185 (2017)

    Article  CAS  Google Scholar 

  14. Q.P. Kang, X.B.S.B. HERen, L. Zhang, M. Wu, C.Y. Guo, Q. Liu, T.T. Liu, X.H. Qu, Effect of molybdenum carbide intermediate layers on thermal properties of copper–diamond composites. J. Alloys Compd. 576, 380–385 (2013)

    Article  CAS  Google Scholar 

  15. S. Nezamdoust, D. Seifzadeh, A. Habibi-Yangjeh, Nano-diamond incorporated sol–gel coating for corrosion protection of magnesium alloy. Trans. Nonferrous Met. Soc. China 30(06), 1535–1549 (2020)

    Article  CAS  Google Scholar 

  16. W.M. Daoush, H.S. Park, S.H. Hong, Fabrication of TiN/cBN and TiC/diamond coated particles by titanium deposition process. Trans. Nonferrous Met. Soc. China 24(11), 3562–3570 (2014)

    Article  CAS  Google Scholar 

  17. Y.F. Zhu, L. Wang, W.Q. Yao, L.L. Cao, The interface diffusion and reaction between Cr layer and diamond particle during metallization. Appl. Surf. Sci. 171(1–2), 143–150 (2001)

    Article  CAS  Google Scholar 

  18. C.R. Wang, W.Tian, J.S. Hu, B. Li, P.C. Li, T.S. Lin, W.H. Liao, Magnetron sputtering coating and heat treatment process of diamond copper particles. Trans. Nonferrous Met. Soc. (2021)

  19. X.Y. Shen, X.B. He, S.B. Ren, H.M. Zhang, X.H. Qu, Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites. J. Alloys Compd. 529, 134–139 (2012)

    Article  CAS  Google Scholar 

  20. T. Okada, K. Fukuoka, Y. Arata, S. Yonezawa, H. Kiyokawa, M. Takashima, Tungsten carbide coating on diamond particles in molten mixture of Na2CO3 and NaCl. Diam. Relat. Mater. 52, 11–17 (2015)

    Article  CAS  Google Scholar 

  21. A.M. Abyzov, S.V. Kidalov, F.M. Shakhov, High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix. J. Mater. Sci. 46(5), 1424–1438 (2011)

    Article  CAS  Google Scholar 

  22. A.V. Ukhina, D.V. Dudina, M.A. Esikov, D.A. Samoshkin, S.V. Stankus, I.N. Skovorodin, E.N. Galashov, B.B. Bokhonov, The influence of morphology and composition of metal–carbide coatings deposited on the diamond surface on the properties of copper–diamond composites. Surf. Coat. Technol. 401, 126272 (2020)

    Article  CAS  Google Scholar 

  23. R.X. Liu, G.Q. Luo, Y. Li, J. Zhang, Q. Shen, L.M. Zhang, Microstructure and thermal properties of diamond/copper composites with Mo2C in-situ nano-coating. Surf. Coat. Technol. 360, 376–381 (2019)

    Article  CAS  Google Scholar 

  24. G. Chang, F.Y. Sun, L.H. Wang, Y. Zhang, X.T. Wang, J.G. Wang, M.J. Kim, H.L. Zhang, Mo-interlayer-mediated thermal conductance at Cu/diamond interface measured by time-domain thermoreflectance. Compos. 135, 105921 (2020)

    Article  CAS  Google Scholar 

  25. T. Long, The effect of constructing interface on microstructure and thermal conductivity of diamond/copper composites for thermal management. Nanchang Hangkong University. (2014)

  26. M.H. Hu, K.P. Yu, N. Bi, S.S. Li, T.C. Su, Q. Hu, Effect of diamond size on properties of particles reinforced diamond/Cu composites. J. Funct. Mater. 49(1), 1059–1063 (2018)

    CAS  Google Scholar 

  27. H. Chen, C.C. Jia, S.J. Li, X. Jia, X. Yang, Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique. Int. J. Miner. Met. Mater. 19(4), 364–371 (2012)

    Article  CAS  Google Scholar 

  28. E.A. Ekimov, N.V. Suetin, A.F. Popovich, V.G. Ralchenko, Thermal conductivity of diamond composites sintered under high pressures. Diam. Relat. Mater. 17(4–5), 838–843 (2008)

    Article  CAS  Google Scholar 

  29. H.D. Zhang, Y. Liu, F. Zhang, D. Zhang, H.X. Zhu, T.X., Fan, Hot deformation behavior and processing maps of diamond/Cu composites. Metall. Mater. Trans. A 49(6), 1–11 (2018)

    Article  CAS  Google Scholar 

  30. K. Hanada, K. Matsuzaki, T. Sano, Thermal properties of diamond particle-dispersed Cu composites. J. Mater. Process. Technol. 153–154, 514–518 (2004)

    Article  CAS  Google Scholar 

  31. C. Zhang, R.C. Wang, Z.Y. Cai, C.Q. Peng, N.G. Wang, Low-temperature densification of diamond/Cu composite prepared from dual-layer coated diamond particles. Mater. Sci. 26(1), 185–190 (2015)

    CAS  Google Scholar 

  32. Q.L. Che, J.J. Zhang, X.K. Chen, Y.Q. Ji, Y.W. Li, L.X. Wang, S.Z. Cao, L. Guo, Z. Wang, S.W. Wang, Z.K. Zhang, Y.G. Jiang, Spark plasma sintering of titanium-coated diamond and copper–titanium powder to enhance thermal conductivity of diamond/copper composites. Mater. Sci. Semicond. Process. 33, 67–75 (2015)

    Article  CAS  Google Scholar 

  33. Y.D. Igorevich, S.A. Vladimirovich, S.P.N. Washington, P.P. Yurevich, T.S.M. Ramon, Modeling process of spark plasma sintering of powder materials by finite element method. Mater. Sci. Forum 834, 10 (2015)

    Google Scholar 

  34. K. Chu, Z.F. Liu, C.C. Jia, H. Chen, X.B. Liang, W.J. Gao, W.H. Tian, H. Guo, Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles. J. Alloys Compd. 529, 453–458 (2010)

    Article  CAS  Google Scholar 

  35. H.Z. Li, C.R. Wang, L.M. Wu, C.M.H. Chen, C. Wu, N. Wang, Z.Y. Li, L.N. Tang, Q.L. Pang, Optimization of process parameters, microstructure, and thermal conductivity properties of Ti-coated diamond/copper composites prepared by spark plasma sintering. Mater. Sci. Mater. Electron. 32, 9115–9125 (2021)

    Article  CAS  Google Scholar 

  36. R. Chang, J.B. Zang, Y.H. Wang, Y.Q. Yu, J. Lu, X.P. Xu, Preparation of the gradient Mo layers on diamond grits by spark plasma sintering and their effect on Fe-based matrix diamond composites. J. Alloys Compd. 695, 70–75 (2017)

    Article  CAS  Google Scholar 

  37. M. Tokita, E. Bldg, K. Sc, P. Ksp, Mechanism of spark plasma sintering. Ceram. 21-22, 23–33 (1999)

    Google Scholar 

  38. Y.H. Dong, R.Q. Zhang, X.B. He, Z.G. YE, X.H. Qu, Fabrication and infiltration kinetics analysis of Ti-coated diamond/copper composites with near-net-shape by pressureless infiltration. Mater. Sci. Eng. B 177, 1524–1530 (2012)

    Article  CAS  Google Scholar 

  39. L. Yang, L. Sun, W.W. Bai, L.C. Li, Thermal conductivity of Cu–Ti/diamond composites via spark plasma sintering. Diam. Relat. Mater. 94, 37–42 (2019)

    Article  CAS  Google Scholar 

  40. C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, J. R. Rumble Jr., NIST Standard Reference Database 20, in: NIST XPS Database Version, vol. 3 (2003)

  41. Y.P. Pan, X.B. He, S.B. Ren, M. Wu, X.H. Qu, Optimized thermal conductivity of diamond/Cu composite prepared with tungsten-copper-coated diamond particles by vacuum sintering technique. Vacuum 153, 74–81 (2018)

    Article  CAS  Google Scholar 

  42. Q.L. Che, X.K. Chen, Y.Q. Ji, Y.W. Li, L.X. Wang, S.Z. Cao, Y.G. Jiang, Z. Wang, The influence of minor titanium addition on thermal properties of diamond/copper composites via in situ reactive sintering. Mater. Sci. Semicond. Process. 30, 104–111 (2015)

    Article  CAS  Google Scholar 

  43. N. Jiang, L.C. Wang, J.H. Won, M.H. Jeon, Y. Mori, A. Hatta, T. Ito, T. Sasaki, A. Hiraki, Interfacial analysis of CVD diamond on copper substrates. Diam. Relat. Mater. 6(5–7), 743–746 (1997)

    Article  CAS  Google Scholar 

  44. W.Q. Qiu, Z.W. Liu, L.X. He, D.C. Zeng, Y.W. Mai, Improved interfacial adhesion between diamond film and copper substrate using a Cu (Cr)–diamond composite interlayer. Mater. Lett. 81, 155–157 (2012)

    Article  CAS  Google Scholar 

  45. C.R. Wang, H.Z. Li, M.H. Chen, Z.Y. Li, L.N. Tang, Microstructure and thermo-physical properties of Cu–Ti double-layer coated diamond/Cu composites fabricated by spark plasma sintering. Diam. Relat. Mater. 109, 108041 (2020)

    Article  CAS  Google Scholar 

  46. C. Zhang, R.C. Wang, Z.Y. Cai, C.Q. Peng, Y. Feng, L. Zhang, Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vaccum hot pressing. Surf. Coat. Technol. 277, 99–307 (2015)

    Article  CAS  Google Scholar 

  47. H.B. Hu, J. Kong, Improved thermal performance of diamond-vopper composites with boron carbide coating. J. Mater. Eng. Perform. 23(2), 651–657 (2014)

    Article  CAS  Google Scholar 

  48. W.S. Williams, The thermal conductivity of metallic ceramics. JOM 50(6), 62–66 (1998)

    Article  CAS  Google Scholar 

  49. E.T. Swartz, R.O. Pohl, Thermal boundary resistance. Reviews.Mod. Phys. 61, 605–620 (1989)

    Article  Google Scholar 

  50. R.J. Stoner, H.J. Maris, Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys. Rev. B 48(22), 16373 (1993)

    Article  CAS  Google Scholar 

Download references

Funding

This was supported by the National Natural Science Foundation of China (Grant No. 52075250), the China Postdoctoral Science Foundation (Grant No. 2020M683376) and State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Grant No. AWJ-22M13), the Fundamental Research Funds for the Central Universities (Grant No. NT2021018).

Author information

Authors and Affiliations

Authors

Contributions

HL: done experiments and wrote the manuscript, CW: modified the structure of manuscript, WD: modified the grammar of manuscript and improved the English erros, TW, JH, CW and MC: guided and assisted the work of experiment, HZ, TL, WL modified the structure of manuscript, WD modified and improvd the overall quality of the manuscript.

Corresponding authors

Correspondence to Changrui Wang, Lianmei Wu or Hao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported.

Ethical approval

The authors comply with ethical standard in this paper writing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, C., Ding, W. et al. Microstructure evolution of diamond with molybdenum coating and thermal conductivity of diamond/copper composites fabricated by spark plasma sintering. J Mater Sci: Mater Electron 33, 15369–15384 (2022). https://doi.org/10.1007/s10854-022-08441-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08441-0

Navigation