Skip to main content
Log in

Interface modification by Fmoc-Met-OH molecule for high-efficient perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The numerous defects on the surface and grain boundaries of polycrystalline perovskite after solution treatment would seriously affect the performance of organic–inorganic hybrid perovskite solar cells. Interface modification is considered to be an effective method to reduce defects of the perovskite films. In this work, a multi-functional amino acid molecule, Fmoc-Met-OH, was introduced into anti-solvent solution to delay the crystallization of perovskites for high-quality perovskite films. Systematic study demonstrates that amino acid molecules play a significant role in promoting the morphology and crystal structure of perovskite films. The surface trap states of perovskite films are reduced by the interaction of Fmoc-Met-OH functional groups with the uncoordinated metal cation of perovskite, resulting in inhibition of charge recombination and enhanced charge transport. The efficiency of the modified device can reach up to 16.75% compared to 14.17% of the control counterpart. Moreover, the unpackaged device exhibited good stability and can retain 65% of the initial efficiency after being stored in air atmosphere at 30% humidity for 220 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Stavrakas, G. Delport, A.A. Zhumekenov, M. Anaya, R. Chahbazian, O.M. Bakr, E.S. Barnard, S.D. Stranks, Visualizing buried local carrier diffusion in halide perovskite crystals via two-photon microscopy. ACS Energy Lett. 5, 117–123 (2020)

    Article  CAS  Google Scholar 

  2. X. Yang, Y. Fu, R. Su, Y. Zheng, Y. Zhang, W. Yang, M. Yu, P. Chen, Y. Wang, J. Wu, D. Luo, Y. Tu, L. Zhao, Q. Gong, R. Zhu, Superior carrier lifetimes exceeding 6 mus in polycrystalline halide perovskites. Adv. Mater. 32, 2002585 (2020)

    Article  CAS  Google Scholar 

  3. S. Huang, H. Shan, W. Xuan, W. Xu, D. Hu, L. Zhu, C. Huang, W. Sui, C. Xiao, Y. Zhao, Y. Qiang, X. Gu, J. Song, C. Zhou, High-performance humidity sensor based on CsPdBr3 nanocrystals for noncontact sensing of hydromechanical characteristics of unsaturated soil. Phys. Status Solidi-R 22, 17 (2022). https://doi.org/10.1002/pssr.202200017

    Article  CAS  Google Scholar 

  4. S. Cao, Two-dimensional gersiloxenes with tunable band gap as new photocatalysts. Rare Met. 39, 610–612 (2020)

    Article  CAS  Google Scholar 

  5. A. Sharma, N.B. Chaure, Studies on CH3NH3PbI3 prepared by low-cost wet chemical technique. Appl. Phys. A-Mater. Sci. Process. 125, 767 (2019)

    Article  CAS  Google Scholar 

  6. J. Huang, Y. Yuan, Y. Shao, Y. Yan, Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2, 17042 (2017)

    Article  CAS  Google Scholar 

  7. G. Huang, Z. Xu, T. Luo, Z. Yan, M. Zhang, Fluorescent light enhanced graphitic carbon nitride/ceria with ultralow-content platinum catalyst for oxidative decomposition of formaldehyde at ambient temperature. Rare Met. 40, 3135–3146 (2021)

    Article  CAS  Google Scholar 

  8. L.S. Zhang, X.L. Gao, X.H. Liu, Z.J. Zhang, R. Cao, H.C. Cheng, M.Y. Wang, X.Y. Yan, S.C. Yang, CHAIN: unlocking informatics-aided design of Li metal anode from materials to applications. Rare Met. 41, 1477–1489 (2022)

    Article  CAS  Google Scholar 

  9. S.C. Yang, R. He, Z.J. Zhang, Y.G. Cao, X.L. Gao, X.H. Liu, CHAIN: cyber hierarchy and interactional network enabling digital solution for battery full-lifespan management. Matter 3, 27–41 (2020)

    Article  Google Scholar 

  10. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)

    Article  CAS  Google Scholar 

  11. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015)

    Article  CAS  Google Scholar 

  12. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019)

    Article  CAS  Google Scholar 

  13. X. Zhu, M. Du, J. Feng, H. Wang, Z. Xu, L. Wang, S. Zuo, C. Wang, Z. Wang, C. Zhang, X. Ren, S. Priya, D. Yang, S.F. Liu, High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew. Chem. Int. Ed. 60, 4238–4244 (2021)

    Article  CAS  Google Scholar 

  14. Y.M. Xu, Z.H. Lin, W. Wei, Y. Hao, S.Z. Liu, J.Y. Ouyang, J.J. Chang, Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 14, 117 (2022)

    Article  CAS  Google Scholar 

  15. P. Ru, E. Bi, Y. Zhang, Y. Wang, W. Kong, Y. Sha, W. Tang, P. Zhang, Y. Wu, W. Chen, X. Yang, H. Chen, L. Han, High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells. Adv. Energy Mater. 10, 1903487 (2020)

    Article  CAS  Google Scholar 

  16. L. Zhao, X. Sun, Q. Yao, S. Huang, L. Zhu, J. Song, Y. Zhao, Y. Qiang, Field-effect control in hole transport layer composed of Li:NiO/NiO for high-efficient inverted planar perovskite solar cell. Adv. Mater. Interfaces 9, 2101562 (2022)

    Article  CAS  Google Scholar 

  17. NREL, Best research cell efficiencies chart, https://www.nrel.gov/pv/cell-efficiency.html. Accessed Dec 2020.

  18. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.-P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016)

    Article  CAS  Google Scholar 

  19. L. Zhang, K. Cao, J. Qian, Y. Huang, X. Wang, M. Ge, W. Shen, F. Huang, M. Wang, W. Zhang, S. Chen, T. Qin, Crystallization control and multisite passivation of perovskites with amino acid to boost the efficiency and stability of perovskite solar cells. J. Mater. Chem. C 8, 17482–17490 (2020)

    Article  CAS  Google Scholar 

  20. W.Y. Cao, Z.S. Hu, Z.H. Lin, X. Guo, J. Su, J.J. Chang, Y. Hao, Defects and doping engineering towards high performance lead-free or lead-less perovskite solar cells. J. Energy Chem. 68, 420–438 (2022)

    Article  Google Scholar 

  21. I.L. Braly, D.W. de Quilettes, L.M. Pazos-Outón, S. Burke, M.E. Ziffer, D.S. Ginger, H.W. Hillhouse, Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nat. Photon. 12, 355–361 (2018)

    Article  CAS  Google Scholar 

  22. T.S. Su, F.T. Eickemeyer, M.A. Hope, F. Jahanbakhshi, M. Mladenovic, J. Li, Z. Zhou, A. Mishra, J.H. Yum, D. Ren, A. Krishna, O. Ouellette, T.C. Wei, H. Zhou, H.H. Huang, M.D. Mensi, K. Sivula, S.M. Zakeeruddin, J.V. Milic, A. Hagfeldt, U. Rothlisberger, L. Emsley, H. Zhang, M. Gratzel, Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells. J. Am. Chem. Soc. 142, 19980–19991 (2020)

    Article  CAS  Google Scholar 

  23. Y. Li, Y. Zhao, Q. Chen, Y.M. Yang, Y. Liu, Z. Hong, Z. Liu, Y.T. Hsieh, L. Meng, Y. Li, Y. Yang, Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J. Am. Chem. Soc. 137, 15540–15547 (2015)

    Article  CAS  Google Scholar 

  24. J. Shi, X. Xu, D. Li, Q. Meng, Interfaces in perovskite solar cells. Small 11, 2472–2486 (2015)

    Article  CAS  Google Scholar 

  25. Y. Cai, J. Cui, M. Chen, M. Zhang, Y. Han, F. Qian, H. Zhao, S. Yang, Z. Yang, H. Bian, T. Wang, K. Guo, M. Cai, S. Dai, Z. Liu, S. Liu, Multifunctional enhancement for highly stable and efficient perovskite solar cells. Adv. Funct. Mater. 31, 2005776 (2020)

    Article  CAS  Google Scholar 

  26. X. Guo, J. Su, Z.H. Lin, X.H. Wang, Q.R. Wang, Z.B. Zeng, J.J. Chang, Y. Hao, Synergetic surface charge transfer doping and passivation toward high efficient and stable perovskite solar cells. iScience 24, 102276 (2021)

    Article  CAS  Google Scholar 

  27. Y. Zhong, M. Hufnagel, M. Thelakkat, C. Li, S. Huettner, Role of PCBM in the suppression of hysteresis in perovskite solar cells. Adv. Funct. Mater. 30, 1908920 (2020)

    Article  CAS  Google Scholar 

  28. J. Li, X. Dong, T. Liu, H. Liu, S. Wang, X. Li, Electronic coordination effect of the regulator on perovskite crystal growth and its high-performance solar cells. ACS Appl. Mater. Interfaces 12, 19439–19446 (2020)

    Article  CAS  Google Scholar 

  29. N.K. Noel, A. Abate, S.D. Stranks, E.S. Parrott, V.M. Burlakov, A. Goriely, H.J. Snaith, Enhanced photoluminescence and solar cell performance via lewis base passivation of organic inorganic lead halide perovskites. ACS Nano 8, 9815–9821 (2014)

    Article  CAS  Google Scholar 

  30. S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, X. Xiao, X.C. Zeng, J. Huang, Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc. 141, 5781–5787 (2019)

    Article  CAS  Google Scholar 

  31. H. Min, G. Kim, M.J. Paik, S. Lee, W.S. Yang, M. Jung, S.I. Seok, Stabilization of precursor solution and perovskite layer by addition of sulfur. Adv. Energy Mater. 9, 1803476 (2019)

    Article  CAS  Google Scholar 

  32. L. Zhou, J. Su, Z.H. Lin, X. Guo, J. Ma, T. Li, J.C. Zhang, J.J. Chang, Y. Hao, Synergistic interface layer optimization and surface passivation with fluorocarbon molecules toward efficient and stable inverted planar perovskite solar cells. Research 2021, 9836752 (2021)

    CAS  Google Scholar 

  33. J. He, J. Su, Z.H. Lin, J. Ma, L. Zhou, S.Y. Zhang, S.Z. Liu, J.J. Chang, Y. Hao, Enhanced efficiency and stability of all-inorganic CsPbI2Br perovskite solar cells by organic and ionic mixed passivation. Adv. Sci. 8, 2101367 (2021)

    Article  CAS  Google Scholar 

  34. S.-C. Yun, S. Ma, H.-C. Kwon, K. Kim, G. Jang, H. Yang, J. Moon, Amino acid salt-driven planar hybrid perovskite solar cells with enhanced humidity stability. Nano Energy 59, 481–491 (2019)

    Article  CAS  Google Scholar 

  35. F. Wang, W. Geng, Y. Zhou, H.H. Fang, C.J. Tong, M.A. Loi, L.M. Liu, N. Zhao, Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28, 9986–9992 (2016)

    Article  CAS  Google Scholar 

  36. M.H. Li, T.G. Sun, J.Y. Shao, Y.D. Wang, J.S. Hu, Y.W. Zhong, A sulfur-rich small molecule as a bifunctional interfacial layer for stable perovskite solar cells with efficiencies exceeding 22%. Nano Energy 79, 105462 (2021)

    Article  CAS  Google Scholar 

  37. Y. Zhou, C.Y. Liu, F.N. Meng, C. Zhang, G.Y. Wei, L.G. Gao, T.L. Ma, Recent progress in perovskite solar cells modified by sulfur compounds. Solar RRL 5, 2000713 (2021)

    Article  CAS  Google Scholar 

  38. N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti, C. Hu, Z. Qiu, Z. Xu, G. Zheng, L. Wang, Y. Zhang, L. Li, H. Liu, Y. Lun, J. Hong, X. Wang, Y. Liu, H. Xie, Y. Gao, Y. Bai, S. Yang, G. Brocks, Q. Chen, H. Zhou, Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019)

    Article  CAS  Google Scholar 

  39. J. Song, Y. Yang, Y.L. Zhao, M. Che, L. Zhu, X.Q. Gu, Y.H. Qiang, Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell. Mater. Sci. Eng. B 217, 18–25 (2017)

    Article  CAS  Google Scholar 

  40. X. Yang, D. Luo, Y. Xiang, L. Zhao, M. Anaya, Y. Shen, J. Wu, W. Yang, Y.-H. Chiang, Y. Tu, R. Su, Q. Hu, H. Yu, G. Shao, W. Huang, T.P. Russell, Q. Gong, S.D. Stranks, W. Zhang, R. Zhu, Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33, 2006435 (2021)

    Article  CAS  Google Scholar 

  41. J.W. Lee, Z. Dai, T.H. Han, C. Choi, S.Y. Chang, S.J. Lee, N. De Marco, H. Zhao, P. Sun, Y. Huang, Y. Yang, 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 9, 3021 (2018)

    Article  CAS  Google Scholar 

  42. J. Song, L. Zhao, S. Huang, X. Yan, Q. Qiu, Y. Zhao, L. Zhu, Y. Qiang, H. Li, G. Li, A p-p+ homojunction-enhanced hole transfer in inverted planar perovskite solar cells. Chemsuschem 14, 1396–1403 (2021)

    Article  CAS  Google Scholar 

  43. T.H. Han, J.W. Lee, C. Choi, S. Tan, C. Lee, Y. Zhao, Z. Dai, N. De Marco, S.J. Lee, S.H. Bae, Y. Yuan, H.M. Lee, Y. Huang, Y. Yang, Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10, 520 (2019)

    Article  CAS  Google Scholar 

  44. S. Ma, J. Ahn, Y. Oh, H.C. Kwon, E. Lee, K. Kim, S.C. Yun, J. Moon, Facile sol gel-derived craterlike dual-functioning TiO2 electron transport layer for high-efficiency perovskite solar cells. ACS Appl. Mater. Interfaces 10, 14649–14658 (2018)

    Article  CAS  Google Scholar 

  45. C. Liu, Z. Huang, X. Hu, X. Meng, L. Huang, J. Xiong, L. Tan, Y. Chen, Grain boundary modification via F4TCNQ to reduce defects of perovskite solar cells with excellent device performance. ACS Appl. Mater. Interfaces 10, 1909–1916 (2018)

    Article  CAS  Google Scholar 

  46. Y. Qin, J. Song, Q. Qiu, Y. Liu, Y. Zhao, L. Zhu, Y. Qing, High-quality NiO thin film by low-temperature spray combustion method for perovskite solar cells. J. Alloys Compd. 810, 151970 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the financial supports from the National Natural Science Foundation of China (No. 52102470). The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by BM, XS, XY, LZ, SC, XL, and JS. The first draft of the manuscript was written by BM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Siyan Chen, Xinhua Liu or Jian Song.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Sun, X., Yan, S. et al. Interface modification by Fmoc-Met-OH molecule for high-efficient perovskite solar cells. J Mater Sci: Mater Electron 33, 15359–15368 (2022). https://doi.org/10.1007/s10854-022-08435-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08435-y

Navigation