Skip to main content
Log in

Influence of thallium doping on structural, electrical, and optical properties of ZnO nanorods for TCO applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thallium (Tl)-doped ZnO nanorods were prepared (the doping ratios were between 0 and 5 mol %) in two stages. Combined sol–gel and spin-coating methods and hydrothermal method were used, respectively. Depending on the concentrations of the Tl dopant, the structural, morphological, electrical, and optical properties of the samples were examined. XRD results demonstrated that the ZnO samples were in hexagonal (wurtzite) unit cell type with single crystalline nature. FE-SEM results indicated that the undoped and Tl-doped ZnO samples had hexagonal rod-like structures. The average lengths and diameters of the samples were between 0.90 and 1.35 μm, and 80 and 120 nm, respectively. The electrical conductivity increased with increasing temperature and doping concentrations. For the undoped and 5 mol % Tl-doped ZnO-samples, the electrical conductivity values were 1.22E−08 and 1.95E−05 (Ω.cm)−1 at 25 °C and 4.84E−07 and 3.97E−04 (Ω.cm)−1 at 300 °C, respectively. The 1 mol % Tl-doped ZnO had the highest transmittance (within the range of 70 and 80%) in the wavelength of between 500 and 1000 nm. The band gap energy values of the Tl-doped samples were higher than the undoped ZnO sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Sohn, Y. Soo Han, Transparent conductive oxide (TCO) films for organic light emissive devices (OLEDs) organic light emitting diode- material, process and devices. IntechOpen (2011). https://doi.org/10.5772/18545

    Article  Google Scholar 

  2. M.A. Aouaj, R. Diaz, A. Belayachi, F. Rueda, M. Abd-Lefdil, Comparative study of ITO and FTO thin films grown by spray pyrolysis. Mater Res Bull 44, 1458–1461 (2009). https://doi.org/10.1016/j.materresbull.2009.02.019

    Article  CAS  Google Scholar 

  3. Y. Liu, Y. Li, H. Zeng, ZnO-based transparent conductive thin films: doping, performance, and processing. J. Nanomater. (2013). https://doi.org/10.1155/2013/196521

    Article  Google Scholar 

  4. H. Çolak, O. Türkoğlu, Studies on structural and electrical properties of copper-doped zinc oxide powders prepared by a solid state method at high temperatures. Mater. High Temp. 29, 344–350 (2012). https://doi.org/10.3184/096034012X13390873728509

    Article  CAS  Google Scholar 

  5. V. Kumari, V. Kumar, B.P. Malik, R.M. Mehra, D. Mohan, D. Mohan, Nonlinear optical properties of erbium doped zinc oxide (EZO) thin films. Opt. Commun. 285, 2182–2188 (2012). https://doi.org/10.1016/J.OPTCOM.2011.12.094

    Article  CAS  Google Scholar 

  6. F. Chaabouni, J.B. Belgacem, M. Abaab, Physical properties of TCO-ZnO thin films sputtered from a powder target. Chin. J. Phys. 52(1), 272–285 (2014). https://doi.org/10.1155/2015/936482

    Article  CAS  Google Scholar 

  7. M. Kovalenko, O. Bovgyra, A. Franiv, V. Dzikovskyi, Electronic structure of ZnO thin films doped with group III elements. Mater. Today-Proc. 35, 604–608 (2019). https://doi.org/10.1016/j.matpr.2019.11.274

    Article  CAS  Google Scholar 

  8. R. Hofstadter, Alkali halide scintillation counters. Phys. Rev. 74, 100–101 (1948). https://doi.org/10.1103/PhysRev.74.100

    Article  CAS  Google Scholar 

  9. N. Huang, M.W. Zhu, L.J. Gao, J. Gong, C. Sun, X. Jiang, A template-free sol–gel technique for controlled growth of ZnO nanorod arrays. Appl. Surf. Sci. 257, 6026–6033 (2011). https://doi.org/10.1016/j.apsusc.2011.01.112

    Article  CAS  Google Scholar 

  10. K. Ogata, K. Maejima, F. Sz, S.G. Fujita, Growth mode control of ZnO toward nanorod structures or high-quality layered structures by metal-organic vapor phase epitaxy. J. Cryst. Growth 248, 25–30 (2003). https://doi.org/10.1016/S0022-0248(02)01843-2

    Article  CAS  Google Scholar 

  11. J.J. Wu, S.C. Liu, Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater. 14, 215–218 (2002). https://doi.org/10.1002/1521-4095

    Article  CAS  Google Scholar 

  12. J. Zhao, L. Qin, L. Zhang, Synthesis of quasi-aligned Si-doped ZnO nanorods on Si substrate. Physica E 40, 795–799 (2008). https://doi.org/10.1016/j.physe.2007.10.057

    Article  CAS  Google Scholar 

  13. L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mat. 15, 464–466 (2003). https://doi.org/10.1002/adma.200390108

    Article  CAS  Google Scholar 

  14. P.N. Mbuyisa, O.M. Ndwandwe, C. Cepek, Controlled growth of zinc oxide nanorods synthesized by the hydrothermal method. Thin Solid Films 578, 7–10 (2015). https://doi.org/10.1016/j.tsf.2015.02.002

    Article  CAS  Google Scholar 

  15. L.W. Brooks, J.M. Mativetsky, A. Woll, D. Smilgies, Y.L. Loo, Sputtered ZnO seed layer enhances photovoltaic behavior in hybrid ZnO/P3HT solar cells. Org. Electron. (2013). https://doi.org/10.1016/j.orgel.2013.09.023

    Article  Google Scholar 

  16. S.Y. Pung, K.L. Choy, H.X. Shan, C, Preferential growth of ZnO thin films by the atomic layer deposition technique. Nanotechnology (2008). https://doi.org/10.1088/0957-4484/19/43/435609

    Article  Google Scholar 

  17. S. Saini, P. Mele, H. Honda, T. Suzuki, K. Matsumoto, K. Miyazaki, A. Ichinose, L.M. Luna, R. Carlini, A. Tiwari, Effect of self-grown seed layer on thermoelectric properties of ZnO thin films. Thin Solid Films 605, 289–294 (2016). https://doi.org/10.1016/j.tsf.2015.09.060

    Article  CAS  Google Scholar 

  18. H.G. Chen, Z.W. Li, Seed-assisted growth of epitaxial ZnO nanorod arrays with self-organized periodicity and directional alignment. Appl. Surf. Sci. 258, 556–564 (2011). https://doi.org/10.1016/j.apsusc.2011.08.069

    Article  CAS  Google Scholar 

  19. J. Zhang, W. Que, Preparation and characterization of sol–gel Al-doped ZnO thin films and ZnO nanowire arrays grown on Al-doped ZnO seed layer by hydrothermal method. Sol. Energ. Mat. Sol. C 94, 2181–2186 (2010). https://doi.org/10.1016/j.solmat.2010.07.009

    Article  CAS  Google Scholar 

  20. Y.C. Yoon, K.S. Park, S.D. Kim, Effects of low preheating temperature for ZnO seed layer deposited by sol–gel spin coating on the structural properties of hydrothermal ZnO nanorods. Thin Solid Films 597, 125–130 (2015). https://doi.org/10.1016/j.tsf.2015.11.040

    Article  CAS  Google Scholar 

  21. S. Yilmaz, The geometric resistivity correction factor for several geometrical samples. J. Semicond. 36(082001), 2015 (2015). https://doi.org/10.1088/1674-4926/36/8/082001

    Article  Google Scholar 

  22. H. Çolak, O. Turkoglu, Structural and electrical properties of V-doped ZnO prepared by the solid state reaction. J. Mater. Sci- Mater. El 23, 1750–1758 (2012). https://doi.org/10.1007/s10854-012-0657-1

    Article  CAS  Google Scholar 

  23. RC Weast. Handbook of Chemistry and Physics, 56nd ed. (Newyork, Crc Pres., pp. F-198–199, 1975–1976.

  24. S. Goel, N. Sinha, H. Yadav, S. Godara, A.J. Joseph, B. Kumar, Ferroelectric Gd-doped ZnO nanostructures: enhanced dielectric, ferroelectric and piezoelectric properties. Mater. Chem. Phys. 202, 56–64 (2017). https://doi.org/10.1016/j.matchemphys.2017.08.067

    Article  CAS  Google Scholar 

  25. H. Çolak, O. Türkoğlu, Effect of doping and high-temperature annealing on the structural and electrical properties of Zn1xNixO (0 ≤ x ≤ 0.15) powders. J. Mater. Sci. Tech. 27, 944–995 (2012). https://doi.org/10.1007/s10854-012-0657-1

    Article  CAS  Google Scholar 

  26. H. Çolak, E. Karaköse, Electrical and optical properties of well aligned Ho3+-doped ZnO nanorods as an alternative transparent conducting oxide. J. Min. Met. Mat. S 73, 395–403 (2021). https://doi.org/10.1007/s11837-020-04483-z

    Article  CAS  Google Scholar 

  27. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26, 98–100 (1918)

    Google Scholar 

  28. A. Jimenez-Gonzalez, S. Suarez-Parra, Effect of heat treatment on the properties of ZnO thin films prepared by successive ion layer adsorption and reaction (SILAR). J. Cryst. Growth 167, 649–655 (1996). https://doi.org/10.1016/0022-0248(96)00308-9

    Article  CAS  Google Scholar 

  29. A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009). https://doi.org/10.1088/0034-4885/72/12/126501

    Article  CAS  Google Scholar 

  30. M. Behrens, G. Lolli, N. Muratova, I. Kasatkin, M. Hävecker, R.N. d’Alnoncourt, O. Storcheva, K. Köhler, M. Muhler, R. Schlögl, The effect of Al-doping on ZnO nanoparticles applied as catalyst support. Phys. Chem. Chem. Phys. 15, 1374–1381 (2013). https://doi.org/10.1039/C2CP41680H

    Article  CAS  Google Scholar 

  31. M.M. Rahman, M.K.R. Khan, M.R. Islam, M.A. Halim, M. Shahjahan, M.A. Hakim, D.K. Saha, J.U. Khan, Effect of Al doping on structural, electrical, optical and photoluminescence properties of nano-structural ZnO thin films. J. Mater. Sci. Tech. 28, 329–335 (2012). https://doi.org/10.1016/S1005-0302(12)60064-4

    Article  CAS  Google Scholar 

  32. R. Bhardwaj, A. Bharti, J.P. Singh, K.H. Chae, N. Goyal, Influence of Cu doping on the local electronic and magnetic properties of ZnO nanostructures. Nanoscale Adv. 2, 4450–4463 (2020). https://doi.org/10.1039/D0NA00499E

    Article  CAS  Google Scholar 

  33. H. Çolak, Influence of Tm2O3 doping on structural and electrical properties of ZnO. J. Mater. Sci- Mater. El 26, 784–790 (2015). https://doi.org/10.1007/s10854-014-2464-3

    Article  CAS  Google Scholar 

  34. A.V. Patil, C.G. Dighavkar, S.K. Sonawane, S.J. Patil, R.Y. Borse, Effect of firing temperature on electrical and structural characteristics of screen printed ZnO thick films. J. Optoelectron. Biomed. Mater. 1, 226–233 (2009)

    Google Scholar 

  35. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, The effect of dopant concentration on properties of transparent conducting Al-doped ZnO thin films for efficient Cu2ZnSnS4 thin-film solar cells prepared by electrodeposition method. Appl. Nanosci. 5, 993–1001 (2015). https://doi.org/10.1007/s13204-015-0400-3

    Article  CAS  Google Scholar 

  36. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968). https://doi.org/10.1016/0025-5408(68)90023-8

    Article  CAS  Google Scholar 

  37. F.J. Serrao, N.N. Bappalige, K.M. Sandeep, S. Raghavendr, Dominance of c-axis orientation on the carrier transport properties of Sn doped ZnO thin films. Thin Solid Films 722, 138579 (2021). https://doi.org/10.1016/j.tsf.2021.138579

    Article  CAS  Google Scholar 

  38. J.T. Chen, J. Wang, F. Zhang, G.A. Zhang, Z.G. Wu, P.X. Yan, The effect of La doping concentration on the properties of zinc oxide films prepared by the sol–gel method. J. Cryst. Growth 310, 2627–2632 (2008). https://doi.org/10.1016/j.jcrysgro.2008.01.011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HÇ: ınvestigation, writing—original manuscript, supervision. HİM: ınvestigation.

Corresponding author

Correspondence to Hakan Çolak.

Ethics declarations

Conflict of interest

Authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çolak, H., Mercan, H.İ. Influence of thallium doping on structural, electrical, and optical properties of ZnO nanorods for TCO applications. J Mater Sci: Mater Electron 33, 14816–14828 (2022). https://doi.org/10.1007/s10854-022-08401-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08401-8

Navigation