Skip to main content
Log in

Ferromagnetic resonance linewidth mechanism of Sr–Sn substituting YIG ferrite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Yttrium iron garnet (YIG) ferrite has become an important microwave magnetic material due to its superior magnetic and wide range of applications. Sr–Sn substituted Y3−xSrxFe5−xSnxO12 (x = 0.02–0.3) ferrite produced by solid-state reaction method. The phase, microstructure and magnetic properties of the powders were analyzed. The actual data explains the relative influence of Sr–Sn doping on A–d exchange and grain growth. This paper quote double magneton scattering theory to give the polycrystalline linewidth composing of anisotropy linewidth \(\Delta H_{{\text{a}}}\) and porosity linewidth \(\Delta H_{{\text{p}}}\). The theoretical change of the line width is obtained, and the close relationship between the line width and related factors is verified. The sample of Y2.85Sr0.15Fe4.85Sn0.15O12 shows excellent properties which are 4πMs = 1953 Gs,\(\Delta H\) = 32 Oe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Raw data were generated at the [Anhui University] large-scale facility. Data are however available from the authors upon reasonable request.

References

  1. V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, C. Vittoria, J. Magn. Magn. Mater. 321, 2035–2047 (2009)

    Article  CAS  Google Scholar 

  2. V.G. Harris, IEEE Trans. Magn. 48, 1075–1104 (2012)

    Article  CAS  Google Scholar 

  3. R. Nazlan, M. Hashim, I.R. Ibrahim, F.M. Idris, I. Ismail, W.N.W. Ab Rahman, N.H. Abdullah, M.M.M. Zulkimi, M.S. Mustaffa, J. Phys. Chem. Solids 85, 1–12 (2015)

    Article  CAS  Google Scholar 

  4. F. Bertaut, F. Forrat, C.R. Acad, Science 242, 382 (1956)

    CAS  Google Scholar 

  5. V. Aulock, H. Wilhelm, HandBook of Microwave Ferrite Materials (Acadmic press INC, London, 1965)

    Google Scholar 

  6. E. Schloemann, Proc Conf of Magn Magn Mate, AIEE spec pub T-91, 1956:600

  7. D.J. Craik, Magnetic Oxides pt.2. (John Wiley & Sons,Ltd, London, 1975), p. 627

  8. R. Kaelberer, C. Patton, IEEE T. Magn. 13, 1230–1232 (1977)

    Article  Google Scholar 

  9. E. Schlömann, J. Phys. Chem. Solids 6, 242–256 (1958)

    Article  Google Scholar 

  10. H.J. Van Hook, F. Euler, J. Appl. Phys. 40, 4001–4005 (1969)

    Article  Google Scholar 

  11. J. Llabrés, J. Nicolas, R. Sroussi, Appl. Phys. 12, 87–91 (1977)

    Article  Google Scholar 

  12. E.P. Wohlfarth, Ferromagnetic Materials (North-Holland Publ. Co., Amsterdam, 1980)

    Google Scholar 

  13. C. Tsay, K. Liu, I. Lin, J. Eur. Ceram. Soc. 24, 1057–1061 (2004)

    Article  CAS  Google Scholar 

  14. Q. Yang, H. Zhang, Y. Liu, Q. Wen, L. Jia, Mater. Lett. 62, 2647–2650 (2008)

    Article  CAS  Google Scholar 

  15. K. Hisatake, Trans. Japan Inst. Met. 13, 305–309 (1972)

    Article  CAS  Google Scholar 

  16. K. Hisatake, K. Ohta, Trans. JIM 11, 307–310 (1970)

    Article  Google Scholar 

  17. Y. Yang, Z. Yu, Q. Guo, K. Sun, R. Guo, X. Jiang, Y. Liu, H. Liu, G. Wu, Z. Lan, Ceram. Int. 44, 11718–11723 (2018)

    Article  CAS  Google Scholar 

  18. J. Nicolas, A. Lagrange, Ferrites, Proc inter Ferrites, 1970:527

  19. Y.Y. Song, S.C. Yu, W.T. Kim, J.R. Park, T.H. Kim, J. Magn. Magn. Mater. 177–181, 257–258 (1998)

    Article  Google Scholar 

  20. G. Winkler, P. Hansen, Mater. Res. Bull. 4, 825–837 (1969)

    Article  CAS  Google Scholar 

  21. H. Cao, H. Zheng, L.N. Fan, Z.F. Cheng, J.W. Zhou, Q. Wu, P. Zheng, L. Zheng, Y. Zhang, Int. J. Appl. Ceram. Tech. 00, 1–10 (2019)

    Google Scholar 

  22. T. Mao, J. Chen, J. Magn. Magn. Mater. 302, 74–81 (2006)

    Article  CAS  Google Scholar 

  23. J.S. Smart, Am. J. Phys. 23, 356–370 (1955)

    Article  CAS  Google Scholar 

  24. W. Yang, L. Wang, Y. Ding, Q. Zhang, J. Mater. Sci.: Mater. Electron. 25, 4517–4523 (2014)

    CAS  Google Scholar 

  25. I.S. Lyubutin, E.F. Makarov, V.A. Povitskii, Symposia Faraday Soc. 1, 31–37 (1967)

    Article  Google Scholar 

  26. S. Geller, Cryst. Mater. 125, 1–47 (1967)

    CAS  Google Scholar 

  27. G. Winkler, P. Hansen, P. Holst, Philips Res. Rep. 27, 151–171 (1972)

    CAS  Google Scholar 

  28. R. Guo, Z. Yu, Y. Yang, X. Jiang, K. Sun, C. Wu, Z. Xu, Z. Lan, J. Alloy. Compd. 589, 1–4 (2014)

    Article  CAS  Google Scholar 

  29. Z.Q. Han, Ferrite and Its Magnetic Physics (Aviation Industry Press, Beijing, 2010), pp. 148–152

    Google Scholar 

  30. H. Van Hook, IEEE T. Magn. 7, 770–773 (1971)

    Article  Google Scholar 

  31. E. Schloemann, Proc Conf of Magn Magn Mater, AIEE spec pub T-91, 1956:600

  32. P.E. Seiden, J.G. Grunberg, J. Appl. Phys. 34, 1696–1698 (1963)

    Article  CAS  Google Scholar 

  33. C.E. Patton, J. Appl. Phys. 41, 1637–1641 (1970)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51872004), by Education Department of Anhui Province (No. KJ2018A0039) and by the Key Research and Development Plan of Anhui Province(Nos. 201904a05020038, 202003a05020051, S202003c08020029).

Funding

The authors declare they have no financial interests.

Author information

Authors and Affiliations

Authors

Contributions

YH: Methodology, validation, investigation, writing—review and editing. SF: conceptualization, methodology, formal analysis. XL: resources, conceptualization, supervision. LZ: methodology, resources.

Corresponding authors

Correspondence to Xiansong Liu or Shuangjiu Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. Research involving human participants and/or animals: This article does not contain any studies with human participants performed by any of the authors. Informed consent: Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Liu, X., Feng, S. et al. Ferromagnetic resonance linewidth mechanism of Sr–Sn substituting YIG ferrite. J Mater Sci: Mater Electron 33, 14663–14671 (2022). https://doi.org/10.1007/s10854-022-08385-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08385-5

Navigation