Skip to main content
Log in

Preparation and optoelectronic enhancement of trivalent terbium complexes with fluorinated β-diketone and bidentate ancillary ligands

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ternary octacoordinated terbium complexes with 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione (TFNB) and substituted 2,2′-bipyridine derivatives were synthesized and investigated in detail. From Tauc’s relation, optical band gap was determined which suggests the conducting nature of terbium complexes. Results of spectral analyses have suggested that paramagnetic Tb3+ ion binds with three TFNB and one respective substituted 2,2′-bipyridine derivative via oxygen and nitrogen atoms, respectively. Upon excitation in UV region, characteristic peaks corresponding to Tb3+ ion were appeared in emission spectra of complexes. Most intense peak at 548 nm (5D4 → 7F5) is responsible for green color of synthesized metal complexes. Color parameters of complexes claim their high green luminous character. Synthesized terbium complexes can be used as emanating material in OLEDs and other display devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors affirm that the information/data of this research article are available inside the article.

References

  1. J. Wang, R. Wang, J. Yang, Z. Zheng, M.D. Carducci, T. Cayou, N. Peyghambarian, G.E. Jabbour, First oxadiazole-functionalized terbium(III) β-diketonate for organic electroluminescence. J. Am. Chem. Soc. 123, 6179 (2001). https://doi.org/10.1021/ja004113u

    Article  CAS  Google Scholar 

  2. J. Kido, Y. Okamoto, Organo lanthanide metal complexes for electroluminescent materials. Chem. Rev. 102, 2357 (2002). https://doi.org/10.1021/cr010448y

    Article  CAS  Google Scholar 

  3. S.U. Khan, W.U. Khan, W.U. Khan, D. Khan, S. Saeed, S. Badshah, M. Ikram, T.A. Saleh, Eu3+, Sm3+ deep-red phosphors as novel materials for white light-emitting diodes and simultaneous performance enhancement of organic-inorganic Perovskite solar cells. Small 16, 2001551 (2020). https://doi.org/10.1002/smll.202001551

    Article  CAS  Google Scholar 

  4. B.S. Karimi, M.M. Amini, M. Ghanbari, M. Janghouri, P. Anzenbacher, S.W. Ng, Synthesis, structure, photoluminescence, and electroluminescence of four europium complexes: fabrication of pure red organic light-emitting diodes from Europium complexes. Eur. J. Inorg. Chem. 2017, 3644 (2017). https://doi.org/10.1002/ejic.201700449

    Article  CAS  Google Scholar 

  5. J.C.G. Bünzli, S.V. Eliseeva, Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J. Rare Earths 28, 824 (2010). https://doi.org/10.1016/S1002-0721(09)60208-8

    Article  CAS  Google Scholar 

  6. R. Delgado, J. Costa, K.P. Guerra, L.M.P. Lima, Lanthanide complexes of macrocyclic derivatives useful for medical applications. Pure Appl. Chem. 77, 569 (2005). https://doi.org/10.1351/pac200577030569

    Article  CAS  Google Scholar 

  7. M.D. McGehee, T. Bergstedt, C. Zhang, A.P. Saab, M.B. O’Regan, G.C. Bazan, V.I. Srdanov, A.J. Heeger, Narrow bandwidth luminescence from blends with energy transfer from semiconducting conjugated polymers to europium complexes. Adv. Mater. 11, 1349 (1999)

    Article  CAS  Google Scholar 

  8. D. Singh, V. Tanwar, S. Bhagwan, I. Singh, Recent advancements in luminescent materials and their potential applications. Adv. Magn. Opt. Mater. (2016). https://doi.org/10.1002/9781119241966.ch10

    Article  Google Scholar 

  9. D. Singh, S. Bhagwan, A. Dalal, K. Nehra, K. Singh, A. Simantilleke, S. Kumar, I. Singh, Intense red luminescent materials of ternary Eu3+ complexes of oxide ligands for electroluminescent display devices. Optik 208, 164111 (2020). https://doi.org/10.1016/j.ijleo.2019.164111

    Article  CAS  Google Scholar 

  10. H. Tsukube, S. Shinoda, Lanthanide complexes in molecular recognition and chirality sensing of biological substrates. Chem. Rev. 102, 2389 (2002). https://doi.org/10.1021/cr010450p

    Article  CAS  Google Scholar 

  11. J. Kido, W. Ikeda, M. Kimura, K. Nagai, White-light-emitting organic electroluminescent device using lanthanide complexes. Jpn. J. Appl. Phys. Part 2 Lett. 35, L394 (1996). https://doi.org/10.1143/jjap.35.l394

    Article  CAS  Google Scholar 

  12. L.N. Sun, H.J. Zhang, Q.G. Meng, F.Y. Liu, L.S. Fu, C.Y. Peng, J.B. Yu, G.L. Zheng, S. Bin Wang, Near-infrared luminescent hybrid materials doped with lanthanide (Ln) complexes (Ln = Nd, Yb) and their possible laser application. J. Phys. Chem. B 109, 6174 (2005). https://doi.org/10.1021/jp044591h

    Article  CAS  Google Scholar 

  13. A. Bellusci, G. Barberio, A. Crispini, M. Ghedini, M. La Deda, D. Pucci, Synthesis and luminescent properties of novel lanthanide(III) β-diketone complexes with nitrogen p, p′-disubstituted aromatic ligands. Inorg. Chem. 44, 1818 (2005). https://doi.org/10.1021/ic048951r

    Article  CAS  Google Scholar 

  14. Z. Abbas, S. Dasari, M.J. Beltrán-Leiva, P. Cantero-López, D. Páez-Hernández, R. Arratia-Pérez, R.J. Butcher, A.K. Patra, Luminescent europium (III) and terbium (III) complexes of β-diketonate and substituted terpyridine ligands: synthesis, crystal structures and elucidation of energy transfer pathways. New J. Chem. 43, 15139 (2019). https://doi.org/10.1039/C9NJ02838B

    Article  CAS  Google Scholar 

  15. B. Alpha, R. Ballardini, V. Balzani, J.M. Lehn, S. Perathoner, N. Sabbatini, Antenna effect in luminescent lanthanide cryptates: a photophysical study. Photochem. Photobiol. 52, 299 (1990). https://doi.org/10.1111/j.1751-1097.1990.tb04185.x

    Article  CAS  Google Scholar 

  16. M.J. Beltrán-Leiva, E. Solis-Céspedes, D. Páez-Hernández, The role of the excited state dynamic of the antenna ligand in the lanthanide sensitization mechanism. Dalt. Trans. 49, 7444 (2020). https://doi.org/10.1039/d0dt01132k

    Article  CAS  Google Scholar 

  17. D.B.A. Raj, B. Francis, M.L.P. Reddy, R.R. Butorac, V.M. Lynch, A.H. Cowley, Highly luminescent poly(methyl methacrylate)-incorporated europium complex supported by a carbazole-based fluorinated 4,5-bis(diphenylphosphino)-9,9- dimethylxanthene oxide Co-ligand. Inorg. Chem. 49, 9055 (2010). https://doi.org/10.1021/ic1015324

    Article  CAS  Google Scholar 

  18. K. Nehra, A. Dalal, A. Hooda, S. Bhagwan, R.K. Saini, B. Mari, S. Kumar, D. Singh, Lanthanides β-diketonate complexes as energy-efficient emissive materials: a review. J. Mol. Struct. 1249, 131531 (2022). https://doi.org/10.1016/j.molstruc.2021.131531

    Article  CAS  Google Scholar 

  19. D. Singh, S. Bhagwan, A. Dalal, K. Nehra, R.K. Saini, K. Singh, S. Kumar, I. Singh, Synthesis and investigation of enhanced luminescence of Ln(III)-complexes containing fluorinated β-diketone and oxygen donor ancillary ligands for efficient advanced displays. J. Lumin. 223, 117255 (2020). https://doi.org/10.1016/j.jlumin.2020.117255

    Article  CAS  Google Scholar 

  20. J. Manzur, C. Poblete, J. Morales, R.C. de Santana, L.J. Queiroz Maia, A. Vega, P. Fuentealba, E. Spodine, Enhancement of Terbium(III)-centered luminescence by tuning the triplet energy level of substituted pyridylamino-4-R-phenoxo tripodal ligands. Inorg. Chem. 59, 5447 (2020). https://doi.org/10.1021/acs.inorgchem.0c00023

    Article  CAS  Google Scholar 

  21. A. Dalal, K. Nehra, A. Hooda, D. Singh, R.S. Malik, S. Kumar, Synthesis and optoelectronic features of 5,5’-Bis(3,4-(ethylenedioxy)thien-2-yl)-2,2’-bipyridine. Optik 248, 167942 (2021). https://doi.org/10.1016/j.ijleo.2021.167942

    Article  CAS  Google Scholar 

  22. R. Ilmi, A. Haque, M.S. Khan, Synthesis and photo-physics of red emitting europium complexes: an estimation of the role of ancillary ligand by chemical partition of radiative decay rate. J. Photochem. Photobiol. A Chem. 370, 135 (2019). https://doi.org/10.1016/j.jphotochem.2018.10.042

    Article  CAS  Google Scholar 

  23. P. Martín-Ramos, M.R. Silva, C. Coya, C. Zaldo, Á.L. Álvarez, S. Álvarez-García, A.M. Matos Beja, J. Martín-Gil, Novel erbium(iii) fluorinated β-diketonate complexes with N,N-donors for optoelectronics: from synthesis to solution-processed devices. J. Mater. Chem. C 1, 2725 (2013). https://doi.org/10.1039/c3tc00649b

    Article  CAS  Google Scholar 

  24. R. Ilmi, K. Iftikhar, Photophysical properties of Lanthanide(III) 1,1,1-trifluoro-2,4-pentanedione complexes with 2,2’-bipyridyl: an experimental and theoretical investigation. J. Photochem. Photobiol. A Chem. 333, 142 (2017). https://doi.org/10.1016/j.jphotochem.2016.10.014

    Article  CAS  Google Scholar 

  25. D. Singh, S. Bhagwan, A. Dalal, K. Nehra, R.K. Saini, K. Singh, A.P. Simantilleke, S. Kumar, I. Singh, Oxide ancillary ligand-based europium β-diketonate complexes and their enhanced luminosity. Rare Met. 40, 2873 (2021). https://doi.org/10.1007/s12598-020-01543-w

    Article  CAS  Google Scholar 

  26. S. Chen, J. Hu, C.W. Yuen, L. Chan, Fourier transform infrared study of supramolecular polyurethane networks containing pyridine moieties for shape memory materials. Polym. Int. 59, 529 (2010). https://doi.org/10.1002/pi.2732

    Article  CAS  Google Scholar 

  27. E.F. Mooney, The infrared spectra of chloro- and bromobenzene derivatives-I. Anisoles and phenetoles. Spectrochim. Acta 19, 877 (1963). https://doi.org/10.1016/0371-1951(63)80175-7

    Article  CAS  Google Scholar 

  28. D. Singh, K. Nehra, R.K. Saini, A. Dalal, S. Bhagwan, K. Singh, A.P. Simantilleke, S. Kumar, Luminescence intensification of terbium(III) ion complexes with dipivaloylmethane (tmhd) and monodentate auxiliary ligands. Optik 206, 164338 (2020). https://doi.org/10.1016/j.ijleo.2020.164338

    Article  CAS  Google Scholar 

  29. K. Nehra, A. Dalal, A. Hooda, R.K. Saini, D. Singh, S. Kumar, Synthesis and photoluminescence characterization of the complexes of samarium dibenzoylmethanates with 1,10-phenanthroline derivatives. Polyhedron 217, 115730 (2022). https://doi.org/10.1016/j.poly.2022.115730

    Article  CAS  Google Scholar 

  30. Y.K. Abdel-Monem, S.A. Abouel-Enein, S.M. El-Seady, Synthesis, characterization and molecular modeling of some transition metal complexes of Schiff base derived from 5-aminouracil and 2-benzoyl pyridine. J. Mol. Struct. 1152, 115 (2018). https://doi.org/10.1016/j.molstruc.2017.09.038

    Article  CAS  Google Scholar 

  31. K. Nehra, A. Dalal, A. Hooda, D. Singh, R.S. Malik, S. Kumar, Spectroscopic and optoelectronic investigations of 3,8-Bis(3,4-(ethylenedioxy)thien-2-yl)-1,10- phenanthroline. J. Mater. Sci. Mater. Electron. 33, 115 (2022). https://doi.org/10.1007/s10854-021-07268-5

    Article  CAS  Google Scholar 

  32. R. Langyan, A. Chauhan, S.L. Dhania, Photophysical properties of highly green luminescent Tb(III) complexes. Optik 247, 168008 (2021). https://doi.org/10.1016/j.ijleo.2021.168008

    Article  CAS  Google Scholar 

  33. C.H. Park, J.G. Kim, S.G. Jung, D.J. Lee, Y.W. Park, B.K. Ju, Optical characteristics of refractive-index-matching diffusion layer in organic light-emitting diodes. Sci. Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-019-45000-w

    Article  CAS  Google Scholar 

  34. X. Liu, S. Gao, L. Wang, J. Jiang, L. Shen, Synthesis, luminescent properties and theoretical study of a new β-diketone and its rare earth ternary complexes. Rare Met. 30, 289 (2011). https://doi.org/10.1007/s12598-011-0287-4

    Article  CAS  Google Scholar 

  35. Y.K. Abdel-Monem, S.A. Abouel-Enein, Structural, spectral, magnetic and thermal studies of 5-(thiophene-2-ylmethine azo) uracil metal complexes: a comparative DFT study. J. Therm. Anal. Calorim. 130, 2257 (2017). https://doi.org/10.1007/s10973-017-6507-x

    Article  CAS  Google Scholar 

  36. H. Wang, P. He, H. Yan, M. Gong, Synthesis, characteristics and luminescent properties of a new europium (III) organic complex applied in near UV LED. Sens. Actuators B Chem. 156, 6 (2011). https://doi.org/10.1016/j.snb.2011.04.049

    Article  CAS  Google Scholar 

  37. A. Hooda, A. Dalal, K. Nehra, D. Singh, S. Kumar, R.S. Malik, P. Kumar, Preparation and optical investigation of green luminescent ternary terbium complexes with aromatic β-diketone. Chem. Phys. Lett. 794, 139495 (2022). https://doi.org/10.1016/j.cplett.2022.139495

    Article  CAS  Google Scholar 

  38. A.K. El-Sawaf, Y.K. Abdel-Monem, M.A. Azzam, Synthesis, spectroscopic, electrochemical characterization, density functional theory (DFT), time dependent density functional theory (TD-DFT), and antibacterial studies of some Co(II), Ni(II), and Cu(II) chelates of (E)-4-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-1-(3-hydroxynaphthalen-2-yl) methylene) thiosemicarbazide Schiff base ligand. Appl. Organomet. Chem. 34, e5729 (2020). https://doi.org/10.1002/aoc.5729

    Article  CAS  Google Scholar 

  39. H.F. Li, G.M. Li, P. Chen, W.B. Sun, P.F. Yan, Highly luminescent lanthanide complexes with novel bis-β-diketone ligand: Synthesis, characterization and photoluminescent properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 97, 197 (2012). https://doi.org/10.1016/j.saa.2012.05.078

    Article  CAS  Google Scholar 

  40. K. Nehra, A. Dalal, A. Hooda, S. Singh, D. Singh, S. Kumar, Spectroscopic and optical investigation of 1,10-phenanthroline based Tb(III) β-diketonate complexes. Inorg. Chim. Acta 536, 120860 (2022). https://doi.org/10.1016/j.ica.2022.120860

    Article  CAS  Google Scholar 

  41. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17, 142 (1992). https://doi.org/10.1002/col.5080170211

    Article  Google Scholar 

  42. A. Hooda, K. Nehra, A. Dalal, S. Singh, R.K. Saini, S. Kumar, D. Singh, Terbium complexes of an asymmetric β-diketone: preparation, photophysical and thermal investigation. Inorg. Chim. Acta 536, 120881 (2022). https://doi.org/10.1016/j.ica.2022.120881

    Article  CAS  Google Scholar 

  43. S. Wang, Q. Sun, B. Devakumar, J. Liang, L. Sun, X. Huang, Novel highly efficient and thermally stable Ca2GdTaO6:Eu3+ red-emitting phosphors with high color purity for UV/blue-excited WLEDs. J. Alloys Compd. 804, 93 (2019). https://doi.org/10.1016/j.jallcom.2019.06.388

    Article  CAS  Google Scholar 

  44. A. Dalal, K. Nehra, A. Hooda, D. Singh, K. Jakhar, S. Kumar, Preparation and photoluminescent characteristics of green Tb(III) complexes with β-diketones and N donor auxiliary ligand. Inorg. Chem. Commun. (2022). https://doi.org/10.1016/j.inoche.2022.109349

    Article  Google Scholar 

Download references

Funding

The author, Anuj Dalal wants to thank to [EMR/2016/006135] from the SERB-DST, New Delhi for financial assistance and MDU, Rohtak for URS for proceeding the research work.

Author information

Authors and Affiliations

Authors

Contributions

AD contributed to data curation and writing of the original draft; KN contributed to investigation and methodology; AH performed formal analysis; RKS contributed to project administration; DS contributed to writing, reviewing, and editing of the manuscript, resources, and supervision; SK contributed to validation and visualization; RSM contributed to resources and software.

Corresponding author

Correspondence to Devender Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest among them.

Research involved in human or animal rights

The article does not involve any study performed on animals or human by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 632 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalal, A., Nehra, K., Hooda, A. et al. Preparation and optoelectronic enhancement of trivalent terbium complexes with fluorinated β-diketone and bidentate ancillary ligands. J Mater Sci: Mater Electron 33, 12984–12996 (2022). https://doi.org/10.1007/s10854-022-08240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08240-7

Navigation