Skip to main content

Advertisement

Log in

Enhanced near-ambient temperature energy storage and electrocaloric effect in the lead-free BaTi0.89Sn0.11O3 ceramic synthesized by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Lead-free perovskite materials with high performance have high potential in clean energy storage applications and developments of electrocaloric devices. This work reports structural, dielectric, ferroelectric, energy storage, and electrocaloric properties near the ambient temperature in barium stannate titanate (BaTi0.89Sn0.11O3, BTS11) ceramic prepared by a sol–gel method. A single perovskite structure formation was confirmed using the X-ray diffraction analysis. Average grain size of 18.5 µm was found by the mean of the SEM micrograph with a density of 5.91 g/cm3. The multiphase coexistence at very near ambient temperature was proved using temperature-dependent micro-Raman measurements and differential scanning calorimetry. The BTS11 ceramic exhibits a high dielectric constant of 15,460 and a low dielectric loss (< 0.055) in a broad temperature range. Moreover, a high energy storage density of 122 mJ/cm3 was shown with an efficiency of 79%, a maximum value of electrocaloric temperature change (ΔT) of 0.86 K, and finally, an electrocaloric responsivity (ΔTE) of 0.24 K.mm/kV at the external electric field change of 35 kV/cm near ambient temperature. The enhanced dielectric, ferroelectric, and electrocaloric properties make BTS11 ceramics a great candidate for solid-state cooling technology and high energy storage applications near ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Z. Surowiak, M.F. Kupriyanov, D. Czekaj, J. Eur. Ceram. Soc. 21, 1377 (2001)

    Article  CAS  Google Scholar 

  2. A.R. James, K. Srinivas, Mater. Res. Bull. 34, 1301 (1999)

    Article  CAS  Google Scholar 

  3. D.A. Gidlow, Occup. Med. 65, 348 (2015)

    Article  CAS  Google Scholar 

  4. C. Zhao, Y. Huang, J. Wu, InfoMat 2, 1163 (2020)

    Article  CAS  Google Scholar 

  5. S. Merselmiz, Z. Hanani, D. Mezzane, M. Spreitzer, A. Bradeško, D. Fabijan, D. Vengust, M. Amjoud, L. Hajji, Z. Abkhar, A.G. Razumnaya, B. Rožič, I.A. Lukyanchuk, Z. Kutnjak, Ceram. Int. 46, 23867 (2020)

    Article  CAS  Google Scholar 

  6. I. Coondoo, N. Panwar, D. Alikin, I. Bdikin, S.S. Islam, A. Turygin, V.Y. Shur, A.L. Kholkin, Acta Mater. 155, 331 (2018)

    Article  CAS  Google Scholar 

  7. X. Wei, X. Yao, Mater. Sci. Eng. B 99, 74 (2003)

    Article  CAS  Google Scholar 

  8. L. Jin, J. Qiao, L. Hou, Y. Tian, Q. Hu, L. Wang, X. Lu, L. Zhang, H. Du, X. Wei, G. Liu, Y. Yan, Ceram. Int. 44, 21816 (2018)

    Article  CAS  Google Scholar 

  9. Q. Zhao, H. Xiao, G. Huangfu, Z. Zheng, J. Wang, F. Wang, Y. Guo, Nano Energy 85, 106028 (2021)

    Article  CAS  Google Scholar 

  10. W. Cai, Y. Fan, J. Gao, C. Fu, X. Deng, J. Mater. Sci. Mater. Electron. 22, 265 (2011)

    Article  CAS  Google Scholar 

  11. J. Koruza, B. Rožič, G. Cordoyiannis, B. Malič, Z. Kutnjak, Appl. Phys. Lett. 106, 202905 (2015)

    Article  CAS  Google Scholar 

  12. J. Gao, Y. Wang, Y. Liu, X. Hu, X. Ke, L. Zhong, Y. He, X. Ren, Sci. Rep. 7, 40916 (2017)

    Article  CAS  Google Scholar 

  13. F. Guo, N. Jiang, B. Yang, S. Zhao, Appl. Phys. Lett. 114, 253901 (2019)

    Article  CAS  Google Scholar 

  14. F. Guo, X. Wu, Q. Lu, S. Zhao, Ceram. Int. 44, 2803 (2018)

    Article  CAS  Google Scholar 

  15. Z. Shi, Y. Liu, F. Guo, S. Zhao, J. Mater. Sci. Mater. Electron. 32, 12557 (2021)

    Article  CAS  Google Scholar 

  16. S. Song, J. Zhai, L. Gao, X. Yao, S. Lu, Z. Xu, J. Appl. Phys. 106, 024104 (2009)

    Article  CAS  Google Scholar 

  17. F. Du, B. Cui, H. Cheng, R. Niu, Z. Chang, Mater. Res. Bull. 44, 1930 (2009)

    Article  CAS  Google Scholar 

  18. G.K. Sahoo, R. Mazumder, J. Mater. Sci. Mater. Electron. 25, 3515 (2014)

    Article  CAS  Google Scholar 

  19. D.S. Keeble, F. Benabdallah, P.A. Thomas, M. Maglione, J. Kreisel, Appl. Phys. Lett. 102, 092903 (2013)

    Article  CAS  Google Scholar 

  20. Z. Hanani, D. Mezzane, M. Amjoud, A.G. Razumnaya, S. Fourcade, Y. Gagou, K. Hoummada, M. El Marssi, M. Gouné, J. Mater. Sci. Mater. Electron. 30, 6430 (2019)

    Article  CAS  Google Scholar 

  21. D. Wang, Z. Fan, G. Rao, G. Wang, Y. Liu, C. Yuan, T. Ma, D. Li, X. Tan, Z. Lu, A. Feteira, S. Liu, C. Zhou, S. Zhang, Nano Energy 76, 104944 (2020)

    Article  CAS  Google Scholar 

  22. S. Marković, M. Mitrić, N. Cvjetićanin, D. Uskoković, J. Eur. Ceram. Soc. 27, 505 (2007)

    Article  CAS  Google Scholar 

  23. M. Cernea, R. Trusca, R. Radu, C. Valsangiacom, J. Alloys Compd. 509, 9934 (2011)

    Article  CAS  Google Scholar 

  24. K.S. Srikanth, V.P. Singh, R. Vaish, J. Eur. Ceram. Soc. 37, 3943 (2017)

    Article  CAS  Google Scholar 

  25. K.C. Singh, A.K. Nath, R. Laishram, O.P. Thakur, J. Alloys Compd. 509, 2597 (2011)

    Article  CAS  Google Scholar 

  26. Z. Hanani, D. Mezzane, M. Amjoud, S. Fourcade, A.G. Razumnaya, I.A. Lukyanchuk, M. Gouné, Superlattices Microstruct. 127, 109 (2019)

    Article  CAS  Google Scholar 

  27. L.H. Robins, D.L. Kaiser, L.D. Rotter, P.K. Schenck, G.T. Stauf, D. Rytz, J. Appl. Phys. 76 (1994)

  28. A. Gajović, J.V. Pleština, K. Žagar, M. Plodinec, S. Šturm, M. Čeh, J. Raman Spectrosc. 44, 412 (2013)

    Article  CAS  Google Scholar 

  29. L.P. Curecheriu, M. Deluca, Z.V. Mocanu, M.V. Pop, V. Nica, N. Horchidan, M.T. Buscaglia, V. Buscaglia, M. van Bael, A. Hardy, L. Mitoseriu, Phase Transit. 86, 703 (2013)

    Article  CAS  Google Scholar 

  30. M. Kumari, N. Baraik, P.M. Sarun, J. Alloys Compd. 883, 160635 (2021)

    Article  CAS  Google Scholar 

  31. H.C.R. Bitra, B.B.V.S.V. Prasad, Int. Lett. Chem. Phys. Astron. 32, 191 (2014)

    Article  Google Scholar 

  32. S. Hunpratub, S. Maensiri, P. Chindaprasirt, Ceram. Int. 40, 13025 (2014)

    Article  CAS  Google Scholar 

  33. Z. Luo, D. Zhang, Y. Liu, D. Zhou, Y. Yao, C. Liu, B. Dkhil, X. Ren, X. Lou, Appl. Phys. Lett. 105, 102904 (2014)

    Article  CAS  Google Scholar 

  34. Md.J. Ansaree, U. Kumar, S. Upadhyay, Appl. Phys. A 123, 432 (2017)

    Article  CAS  Google Scholar 

  35. R. Kumar, I. Singh, R. Meena, K. Asokan, B. Birajdar, S. Patnaik, Mater. Res. Bull. 123, 110694 (2020)

    Article  CAS  Google Scholar 

  36. Z. Song, H. Liu, M.T. Lanagan, S. Zhang, H. Hao, M. Cao, Z. Yao, Z. Fu, K. Huang, J. Am. Ceram. Soc. 100, 3550 (2017)

    Article  CAS  Google Scholar 

  37. Y. Hadouch, S. Ben Moumen, H. Mezzourh, D. Mezzane, M. Amjoud, B. Asbani, A. G. Razumnaya, Y. Gagou, B. Rožič, Z. Kutnjak, and M. El Marssi, J. Mater. Sci. Mater. Electron. (2022).

  38. J. Li, J. Li, S. Qin, X. Su, L. Qiao, Y. Wang, T. Lookman, Y. Bai, Phys. Rev. Appl. 11, 044032 (2019)

    Article  CAS  Google Scholar 

  39. W. Kayaphan, P. Bomlai, Adv. Mater. Sci. Eng. 2018, 1 (2018)

    Article  CAS  Google Scholar 

  40. S. Qi, G. Zhang, L. Duan, T. Zeng, J. Cao, Mater. Res. Bull. 91, 31 (2017)

    Article  CAS  Google Scholar 

  41. H. Zaitouni, L. Hajji, D. Mezzane, E. Choukri, A. Alimoussa, S. Ben Moumen, B. Rožič, M. El-Marssi, and Z. Kutnjak. Phys. B Condens. Matter 566, 55–62 (2019).

  42. H. Mezzourh, S. Belkhadir, D. Mezzane, M. Amjoud, E. Choukri, A. Lahmar, Y. Gagou, Z. Kutnjak, M. El Marssi, Phys. B Condens. Matter 603, 412760 (2021)

    Article  CAS  Google Scholar 

  43. I. Djemel, I. Kriaa, N. Abdelmoula, H. Khemakhem, J. Alloys Compd. 720, 284 (2017)

    Article  CAS  Google Scholar 

  44. X. Wang, J. Wu, B. Dkhil, C. Zhao, T. Li, W. Li, X. Lou, RSC Adv. 7, 5813 (2017)

    Article  CAS  Google Scholar 

  45. Appl. Phys. Lett. 102, 252904 (2013).

Download references

Acknowledgements

The authors gratefully acknowledge the generous financial support of the European Union Horizon 2020 Research and Innovation actions MSCA-RISE-ENGIMA (No. 778072) and MSCA-RISE-MELON (No. 872631) and ARRS project J1-9147 and program P1-0125 and CNRST Priority Program PPR 15/2015 and the ministry of Science and Higher Education of the Russian Federation, grant agreement No 075-15-2021-953.

Funding

This work was supported by CNRST Priority Program PPR 15/2015, by the European Union's Horizon 2020 research and Innovation actions MSCA-RISE-ENGIMA (No. 778072) and MSCA-RISEMELON (No. 872631) and ARRS project J1-9147, and by the Ministry of Science and Higher Education of the Russian Federation, grant agreement No 075–15-2021–953.

Author information

Authors and Affiliations

Authors

Contributions

MZ: Conceptualization, Formal Analysis, Investigation, Data curation, Methodology, and Writing—original draft. YH: Conceptualization, Investigation, Data curation, and Methodology. MA: Supervision, Writing—review & editing. DM: Project administration, Supervision, and Funding acquisition. MG: Supervising, Validation, Funding acquisition, Writing—review & editing. KH: Data curation, Validation, and Review & editing. AA: Validation, Data curation, and review & editing. AGR: Investigation, Data curation, and review & editing. BR: Resources, Validation, and Writing—review & editing. ZK: Project administration, Resources, Validation, Funding acquisition, and Writing—review & editing.

Corresponding author

Correspondence to Marwa Zahid.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Consent to participate

We confirm that all authors mentioned in the manuscript have participated in, read and approved the manuscript, and have given their consent for the submission and subsequent publication of the manuscript.

Consent for publication

We confirm that all the authors mentioned in the manuscript have agreed to publish this paper.

Relevance summary

In the submitted manuscript, the successful synthesis of barium stannate titanate ceramics by sol–gel method and the study of their structural, dielectric, ferroelectric, energy storage, and electrocaloric properties are reported. In addition, we confirm that this work is original and has not been published elsewhere, nor it is currently under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahid, M., Hadouch, Y., Amjoud, M. et al. Enhanced near-ambient temperature energy storage and electrocaloric effect in the lead-free BaTi0.89Sn0.11O3 ceramic synthesized by sol–gel method. J Mater Sci: Mater Electron 33, 12900–12911 (2022). https://doi.org/10.1007/s10854-022-08233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08233-6

Navigation