Skip to main content

Advertisement

Log in

Preparation of paraffin/silica–graphene shape-stabilized composite phase change materials for thermal energy storage

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To achieve shape-stabilized phase change composites with high phase change material (PCM) load and high thermal conductivity, a series of mesoporous silica–graphene composites containing varying amounts of graphene were produced and used as supports, and paraffin was utilized as PCM. The characteristics of mesoporous silica–graphene supports and phase change material composites were analyzed using N2 adsorption and desorption, X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectrometer, differential scanning calorimetry, and thermogravimetry analysis. The pore size of the resultant mesoporous silica–graphene supports ranged from 4.63 to 5.92 nm, with a surface area of 564–664 m2g−1. The results revealed that the composite containing 100 mg initial graphene oxide (PA/MS-100GO) had a maximum melting and solidification phase change enthalpy of 141.45 and 149.70 J g−1, as well as a maximum paraffin loading capacity of 85 wt%. The thermal conductivity of the PA/MS-100GO composite was 0.84 W m−1 K−1, which is 342% higher than pure paraffin. Within operating temperatures of less than 250 °C, all composite PCMs produced in this study demonstrated high thermal stability and chemical compatibility. Consequently, the produced shape-stabilized composite PCMs with good thermal characteristics, thermal conductivity, and chemical stability are desirable for heat energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Renew. Sustain. Energy Rev. (2009). https://doi.org/10.1016/j.rser.2007.10.005

    Article  Google Scholar 

  2. G. Fang, F. Tang, L. Cao, Renew. Sustain. Energy Rev. (2014). https://doi.org/10.1016/j.rser.2014.07.179

    Article  Google Scholar 

  3. Y. Li, H. Yan, Q. Wang, H. Wang, Y. Huang, J. Therm. Anal. Calorim. (2017). https://doi.org/10.1007/s10973-016-6068-4

    Article  Google Scholar 

  4. Y. Tang, Y. Lin, Y. Jia, G. Fang, Energy Build. (2017). https://doi.org/10.1016/j.enbuild.2017.08.005

    Article  Google Scholar 

  5. M. Li, Q. Guo, S. Nutt, J. Sol. Energy (2017). https://doi.org/10.1016/j.solener.2017.02.003

    Article  Google Scholar 

  6. B. Li, S. Nie, Y. Hao, T. Liu, J. Zhu, S. Yan, Energy Convers. Manag. (2015). https://doi.org/10.1016/j.enconman.2015.04.002

    Article  Google Scholar 

  7. Y. Zhou, X. Liu, D. Sheng, C. Lin, F. Ji, L. Dong, S. Xu, H. Wu, Y. Yang, Chem. Eng. J. (2018). https://doi.org/10.1016/j.cej.2018.01.021

    Article  Google Scholar 

  8. J. Yang, G.-Q. Qi, R.-Y. Bao, K. Yi, M. Li, L. Peng, Z. Cai, M.-B. Yang, D. Wei, W. Yang, Energy Stor. Mater. (2018). https://doi.org/10.1016/j.ensm.2017.12.028

    Article  Google Scholar 

  9. Y. Deng, J. Li, Y. Deng, H. Nian, H. Jiang, ACS Sustain. Chem. Eng. (2018). https://doi.org/10.1021/acssuschemeng.8b00631

    Article  Google Scholar 

  10. X. Zhang, Q. Ding, H. Luo, B. Hui, Z. Chang, J. Zhang, Infrared Phys. Technol. (2017). https://doi.org/10.1016/j.infrared.2017.09.016

    Article  Google Scholar 

  11. Y. Chen, X. Zhang, B. Wang, M. Lv, Y. Zhu, RSC Adv. (2017). https://doi.org/10.1039/C7RA00964J

    Article  Google Scholar 

  12. T. Nomura, C. Zhu, N. Sheng, K. Tabuchi, A. Sagara, T. Akiyama, Sol. Energy Mater. Sol. Cells (2015). https://doi.org/10.1016/j.solmat.2015.07.028

    Article  Google Scholar 

  13. J. Puig, I.E. Dell-Erba, W.F. Schroeder, C.E. Hoppe, R.J.J. Williams, ACS Appl. Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b00086

    Article  Google Scholar 

  14. Q. Lian, K. Li, A.A.S. Sayyed, J. Cheng, J. Zhang, J. Mater. Chem. A (2017). https://doi.org/10.1039/C7TA02816D

    Article  Google Scholar 

  15. J. Wang, M. Yang, Y. Lu, Z. Jin, Nano Energy (2016). https://doi.org/10.1016/j.nanoen.2015.11.001

    Article  Google Scholar 

  16. T. Kadoono, M. Ogura, Phys. Chem. Chem. Phys. (2014). https://doi.org/10.1039/C3CP55429E

    Article  Google Scholar 

  17. R.-A. Mitran, D. Berger, C. Munteanu, J. Phys. Chem. C (2015). https://doi.org/10.1021/acs.jpcc.5b02608

    Article  Google Scholar 

  18. Y. Yu, J. Xu, G. Wang, R. Zhang, X. Peng, J. Mater. Sci. (2020). https://doi.org/10.1007/s10853-019-04107-1

    Article  Google Scholar 

  19. J. Choi, H. Fujita, M. Ogura, A. Sakoda, Adsorption (2018). https://doi.org/10.1007/s10450-018-9946-1

    Article  Google Scholar 

  20. J. Li, X. Hu, C. Zhang, W. Luo, X. Jiang, Renew. Energy (2021). https://doi.org/10.1016/j.renene.2021.06.021

    Article  Google Scholar 

  21. M. Li, Z. Wu, J. Tan, Appl. Energy (2012). https://doi.org/10.1016/j.apenergy.2011.11.018

    Article  Google Scholar 

  22. X. Han, T. Zhao, X. Gao, H. Li, Coll. Surf. A Physicochem. Eng. Asp. (2018). https://doi.org/10.1016/j.colsurfa.2018.01.043

    Article  Google Scholar 

  23. X. Zhang, C. Zhu, G. Fang, Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2019.122178

    Article  Google Scholar 

  24. Y. Zhang, K. Sun, Y. Kou, S. Wang, Q. Shi, Sol. Energy (2020). https://doi.org/10.1016/j.solener.2020.06.048

    Article  Google Scholar 

  25. Y. Chen, X. Li, J. Gao, M. Yang, Y. Liu, Y. Liu, X. Tang, J. Mater. Sci. (2021). https://doi.org/10.1007/s10853-020-05638-8

    Article  Google Scholar 

  26. J. Chen, B. Yao, C. Li, G. Shi, Carbon (2013). https://doi.org/10.1016/j.carbon.2013.07.055

    Article  Google Scholar 

  27. R. Luo, S. Wang, T. Wang, C. Zhu, T. Nomura, T. Akiyama, Energy Build. (2015). https://doi.org/10.1016/j.enbuild.2015.09.043

    Article  Google Scholar 

  28. T. Qian, J. Li, H. Ma, J. Yang, Sol. Energy Mater. Sol. Cells (2015). https://doi.org/10.1016/j.solmat.2014.08.017

    Article  Google Scholar 

  29. A. Hussain, I.H. Abidi, C.Y. Tso, K.C. Chan, Z. Luo, C.Y.H. Chao, Int. J. Therm. Sci. (2018). https://doi.org/10.1016/j.ijthermalsci.2017.09.019

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

MF contributed to methodology, formal analysis, data curation, investigation, and writing the original draft. FK contributed to supervision, writing review, and editing. KR contributed to writing review and editing.

Corresponding authors

Correspondence to Mahnaz Falahatian or Fathallah Karimzadeh.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

This material is the authors’ original work, which has not been previously published elsewhere. All authors have been personally and actively involved in substantial work leading to the paper and will take public responsibility for its content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falahatian, M., Karimzadeh, F. & Raeissi, K. Preparation of paraffin/silica–graphene shape-stabilized composite phase change materials for thermal energy storage. J Mater Sci: Mater Electron 33, 12846–12856 (2022). https://doi.org/10.1007/s10854-022-08229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08229-2

Navigation