Skip to main content
Log in

Thermoelectric properties of nitrogen-doped Ge2Sb2Te5 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ge2Sb2Te5 (GST) becomes a potential thermoelectric material due to its good electrical conductivity and low thermal conductivity, while the low Seebeck coefficient limits its high performance. In this paper, N element dopants were introduced to Ge2Sb2Te5 to regulate their carrier concentration and thus optimize their thermoelectric properties. The formation of Ge–N bond reduces the carrier concentration and adjusts the band structure. N doping suppresses Ge–Te bonding and expands the adjacent Te atomic distance, which reduces the valence band top dominated by Te atom and broadens the band gap. Adjustment of carrier concentration and the formation of nitride change the electric transport capacity and the resistivity increases significantly. It is worth noting that the carrier concentration is significantly reduced, while the Seebeck coefficient exhibits a large loss at high doping quantities. According to the single parabolic band (SPB) curves, it is evident that the loss of the Seebeck coefficient is attributable to the reduced effective mass of the carriers. At 380 K, the power factor of 1N–Ge2Sb2Te5 film can reach 1.503 × 102 W/K2 m, while those of 2N and 3N–Ge2Sb2Te5 film are not well optimized. Appropriate amount of N element doping can effectively improve the thermoelectric performance of Ge2Sb2Te5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008). https://doi.org/10.1038/nmat2090

    Article  CAS  Google Scholar 

  2. J. He, T.M. Tritt, Advances in thermoelectric materials research: looking back and moving forward. Science 357, 1–9 (2017). https://doi.org/10.1126/science.aak9997

    Article  CAS  Google Scholar 

  3. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008). https://doi.org/10.1126/science.1158899

    Article  CAS  Google Scholar 

  4. F.J. DiSalvo, Thermoelectric cooling and power generation. Science 285, 703–706 (1999). https://doi.org/10.1126/science.285.5428.703

    Article  CAS  Google Scholar 

  5. C. Uher, Materials Aspect of Thermoelectricity (CRC Press, Boca Raton, 2016), pp. 39–93. https://doi.org/10.1201/9781315197029-3

    Book  Google Scholar 

  6. T. Siegrist, P. Jost, H. Volker et al., Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 10, 202–208 (2011). https://doi.org/10.1038/nmat2934

    Article  CAS  Google Scholar 

  7. S. Mukhopadhyay, L. Lindsay, D.J. Singh, Optic phonons and anisotropic thermal conductivity in hexagonal Ge2Sb2Te5. Sci. Rep. 6, 37076 (2016). https://doi.org/10.1038/srep37076

    Article  CAS  Google Scholar 

  8. S. Smriti, M. Anbarasu, U.P. Deshpande, A systematic evolution of optical band gap and local ordering in Ge1Sb2Te4 and Ge2Sb2Te5 materials revealed by in situ optical spectroscopy. J. Phys. D: Appl. Phys. 51, 375104 (2018). https://doi.org/10.1088/1361-6463/aad684

    Article  CAS  Google Scholar 

  9. H.K. Lyeo, D.G. Cahill, Thermal conductivity of phase-change material Ge2Sb2Te5. Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2359354

    Article  Google Scholar 

  10. P.P. Konstantinov, L.E. Shelimova, E.S. Avilov, Thermoelectric properties of nGeTe · mSb2Te3 layered compounds. Inorg. Mater. (2000). https://doi.org/10.1023/A:1017613804472

    Article  Google Scholar 

  11. F. Yan, T.J. Zhu, X.B. Zhao, S.R. Dong, Microstructures and thermoelectric properties of GeSbTe based layered compounds. Appl. Phys. A. 88, 425–428 (2007). https://doi.org/10.1007/s00339-007-4006-9

    Article  CAS  Google Scholar 

  12. T. Rosenthal, M.N. Schneider, Real structure and thermoelectric properties of GeTe-rich germanium antimony tellurides. Chem. Mater. 23, 4349–4356 (2011). https://doi.org/10.1021/cm201717z

    Article  CAS  Google Scholar 

  13. H. Horii, J.H. Yi, J.H. Park, Y.H. Ha, I.G. Baek, S.O. Park, Y.N. Hwang, S.H. Lee, Y.T. Kim, K.H. Lee, A novel cell technology using N-doped GeSbTe films for phase change RAM, Digest of Technical Papers—Symposium on VLSI Technology (2003), pp. 177–178. https://doi.org/10.1109/VLSIT.2003.1221143

  14. N. Yamada, E. Ohno, K. Nishiuchi, Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 69, 2849–2856 (1991). https://doi.org/10.1063/1.348620

    Article  CAS  Google Scholar 

  15. R. Lan, S.L. Otoo, P.Y. Yuan, P.F. Wang, Y.Y. Yuan, X.B. Jiang, Thermoelectric properties of Sn doped GeTe thin films. Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.145025

    Article  Google Scholar 

  16. G. Hollinger, P. Kumurdjian, J.M. Mackowski, P. Pertosa, L. Porte, T.M. Duc, ESCA study of molecular GeS3xTex As2 glasses. J. Electron. Spectrosc. Relat. Phenom. 5, 237–245 (1974). https://doi.org/10.1016/0368-2048(74)85015-2

    Article  CAS  Google Scholar 

  17. Y. Wang, Y.Z. Hu, E.A. Irene, Electron cyclotron resonance plasma and thermal oxidation mechanisms of germanium. J. Vac. Sci. Technol. A 12, 1309–1314 (1994). https://doi.org/10.1116/1.579313

    Article  CAS  Google Scholar 

  18. K. Prabhakaran, T. Ogino, Oxidation of Ge(100) and Ge(111) surfaces: an UPS and XPS study. Surf. Sci. 325, 263–271 (1995). https://doi.org/10.1016/0039-6028(94)00746-2

    Article  CAS  Google Scholar 

  19. M.C. Jung, Y.M. Lee, H.D. Kim, M.G. Kim, H.J. Shin, K.H. Kim, S.A. Song, H.S. Jeong, C.H. Ko, M. Han, Ge nitride formation in N-doped amorphous Ge2Sb2Te5. Appl. Phys. Lett. 91, 083514-1–83523 (2007). https://doi.org/10.1063/1.2773959

    Article  CAS  Google Scholar 

  20. W.K. Liu, W.T. Yuen, R.A. Stradling, Preparation of InSb substrates for molecularbeam epitaxy. J. Vac. Sci. Technol. B 13, 1539–1545 (1995). https://doi.org/10.1116/1.588184

    Article  CAS  Google Scholar 

  21. R. Izquierdo, E. Sacher, A. Yelon, X-ray photoelectron spectra of antimony oxides. Appl. Surf. Sci. 40, 175–177 (1989). https://doi.org/10.1016/0169-4332(89)90173-6

    Article  CAS  Google Scholar 

  22. R.B. Shalvoy, G.B. Fisher, P.J. Stiles, Bond ionicity and structural stability of some average-valence-five materials studied by x-ray photoemission. Phys. Rev. B: Condens. Matter. 15, 1680–1697 (1977). https://doi.org/10.1103/PhysRevB.15.1680

    Article  CAS  Google Scholar 

  23. Y. Zhang, J. Feng, B.C. Cai, Effects of nitrogen doping on the properties of Ge15Sb85 phase-change thin film. Appl. Surf. Sci. 256, 2223–2227 (2010). https://doi.org/10.1016/j.apsusc.2009.09.077

    Article  CAS  Google Scholar 

  24. B.S. Lee, J.R. Abelson, S.G. Bishop, D.H. Kang, B.K. Cheong, K.B. Kim, Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases. J. Appl. Phys. 97, 093509-1–93518 (2005). https://doi.org/10.1063/1.1884248

    Article  CAS  Google Scholar 

  25. J.L. Miao, D.J. Qian, P.F. Wang et al., Modulated carrier concentration and enhanced seebeck coefficient of Ge2Sb2Te5 thin films by Sn doping. J. Vac. Sci. Technol. 198, 110881 (2022). https://doi.org/10.1016/j.vacuum.2022.110881

    Article  CAS  Google Scholar 

  26. B. Gürbulak, S. Duman, A. Ates, The Urbach tails and optical absorption in layered semiconductor TlGaSe2 and TlGaS2 single crystals. Can. J. Phys. 55, 93–103 (2005). https://doi.org/10.1007/s10582-005-0011-4

    Article  Google Scholar 

  27. A. Pirovano, A.L. Lacaita, A. Benvenuti, F. Pellizzer, R. Bez, Electronic switching in phase-change memories. IEEE Trans. Electron. Devices 51, 452–459 (2004). https://doi.org/10.1109/TED.2003.823243

    Article  Google Scholar 

  28. D.R. Lide, CRC Handbook of Chemistry and Physics, 90th edn. (CRC Press/Taylor and Francis, Boca Raton, 2009). https://doi.org/10.1021/ja906434c

    Book  Google Scholar 

  29. L. Rui, S.O. Leumas, Y. Pengyue, W. Pengfei, Y. Yanyan, J. Xiaobao, Thermoelectric properties of Sn doped GeTe thin films. Appl. Surf. Sci 507, 145025-1–6 (2020). https://doi.org/10.1016/j.apsusc.2019.145025

    Article  CAS  Google Scholar 

  30. R. Kojima, S. Okabayashi, T. Kashihara, K. Horai, T. Matsunaga, E. Ohno, N. Yamada, T. Ohta, Nitrogen doping effect on phase change optical disks. Jpn. J. Appl. Phys. 37, 2098–2103 (1998). https://doi.org/10.1143/jjap.37.2098

    Article  CAS  Google Scholar 

  31. H. Seo, T.H. Jeong, J.W. Park, C. Yeon, S.J. Kim, S.Y. Kim, Investigation of crystallization behavior of sputter-deposited nitrogen-doped amorphous Ge2Sb2Te5 thin films. Jpn. J. Appl. Phys. 39, 745–751 (2000). https://doi.org/10.1143/JJAP.39.745

    Article  CAS  Google Scholar 

  32. A.F. May, G.J. Snyder, Introduction to modeling thermoelectric transport at high temperatures, in Materials, Preparation, and Characterization in Thermoelectrics (CRC Press, Boca Raton, 2012)

Download references

Funding

The present work was financially supported by National Natural Science Foundation of China (No. 51401090).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RL; Methodology: JM and DS; Formal analysis and investigation: DQ and PY; Writing—original draft preparation: DQ; Writing—review and editing: RL and YY; Funding acquisition: RL; Supervision: RL and YY.

Corresponding author

Correspondence to Rui Lan.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Research involved in human or animal rights

This article does not contain any studies with human participants and/or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, D., Miao, J., Yuan, P. et al. Thermoelectric properties of nitrogen-doped Ge2Sb2Te5 thin films. J Mater Sci: Mater Electron 33, 12750–12759 (2022). https://doi.org/10.1007/s10854-022-08221-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08221-w

Navigation