Skip to main content
Log in

Influence of particle size on the magnetocaloric and dielectric properties of GdCrO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the GdCrO3 polycrystalline samples with different particle sizes were prepared by the sol–gel method and the structure, vacancy defects, magnetocaloric property, dielectric property were investigated in detail. The results indicate that the lattice constant and vacancy defects can be affected greatly by the particle size. With the particle sizes increases, the magnetic entropy becomes larger at first, and then it decreases accompanying particle size becomes larger than 395 nm. That is, the d = 395 nm sample presents the best magnetocaloric property and the maximum magnetic entropy (− ΔSM) and the refrigerant capacity (RCP) at T = 3 K and H = 3 T condition is 33.41 J·kg−1 K−1 and 552.4 J kg−1. The temperature and magnetic field dependent permittivity also confirm the magneto-dielectric effect of the prepared GdCrO3. As the particle size increases, the coupling coefficient enhanced continuously. Especially for the d = 485 nm sample, a small field of 1 T could cause the dielectric constant increases by about 10%. This work suggests that increasing the particle size is an effective method for improving the magnetocaloric and magnetoelectric properties of GdCrO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Date availability

All data generated or analyzed during this study are included in this published article.

References

  1. B. Rajeswaran, P. Mandal, R. Saha, E. Suard, C.N.R. Rao, Ferroelectricity induced by cations of nonequivalent spins disordered in the weakly ferromagnetic perovskites, YCr1−xMxO3 (M = Fe or Mn). Chem. Mater. 24, 3591–3595 (2012)

    Article  CAS  Google Scholar 

  2. G. Gong, C. Shi, G. Zerihun, J. Guo, Y. Wang, Y. Qiu, Y. Su, Influence of the Co/Mn ratio on the magnetic order of Ca3Co1+xMn1−xO6 compounds. Mater. Res. Bull. 130, 5 (2020)

    Article  Google Scholar 

  3. B. Rajeswaran, D.I. Khomskii, A.K. Zvezdin, C.N.R. Rao, A. Sundaresan, Field-induced polar order at the Néel temperature of chromium in rare-earth orthochromites: interplay of rare-earth and Cr magnetism. Phys. Rev. B 86, 214409-1-214409–5 (2012)

    Article  Google Scholar 

  4. C. Shi, Y. Su, J. Guo, G. Gong, H. Hu, Y. Gao, Y. Wang, Influence of Ga3+ ion dopant on the structure and magnetic properties of YCrO3. Ceram. Int. 46, 27457–27462 (2020)

    Article  CAS  Google Scholar 

  5. J. Shi, S. Yin, M.S. Seehra, M. Jain, Enhancement in magnetocaloric properties of ErCrO3 via A-site Gd substitution. J. Appl. Phys. 123, 193901 (2018)

    Article  Google Scholar 

  6. S. Kumar, I. Coondoo, M. Vasundhara, V.S. Puli, N. Panwar, Observation of magnetization reversal and magnetocaloric effect in manganese modified EuCrO3 orthochromites. Physica B 519, 69–75 (2017)

    Article  CAS  Google Scholar 

  7. H. Li, Y.Z. Liu, L. Xie, Y.Y. Guo, Z.J. Ma, Y.T. Li, X.M. He, L.Q. Liu, H.G. Zhang, The spin-reorientation magnetic transitions in Ga-doped SmCrO3. Ceram. Int. 44(15), 18913–18919 (2018)

    Article  CAS  Google Scholar 

  8. M. Tripathi, R.J. Choudhary, D.M. Phase, Phase coexistence and the magnetic glasslike phase associated with the Morin type spin reorientation phase transition in SmCrO3. RSC Adv. 93, 90255–90262 (2016)

    Article  Google Scholar 

  9. A. Smith, C.R.H. Bahl, R. Bjãrk, K. Engelbrecht, K.K. Nielsen, N. Pryds, Materials challenges for high performance magnetocaloric refrigeration devices. Adv. Energy Mater. 2, 1288–1318 (2012)

    Article  CAS  Google Scholar 

  10. M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308(2), 325–340 (2007)

    Article  CAS  Google Scholar 

  11. L.H. Yin, J. Yang, P. Tong, X. Luo, W.H. Song, J.M. Dai, X.B. Zhu, Y.P. Sun, Magnetocaloric effect and influence of Fe/Cr disorder on the magnetization reversal and dielectric relaxation in RFe0.5Cr0.5O3 systems. Appl. Phys. Lett. 110, 192904 (2017)

    Article  Google Scholar 

  12. A. Jaiswal, R. Das, K. Vivekanand, T. Maity, P.M. Abraham, S. Adyanthaya, P. Poddar, Magnetic and dielectric properties and Raman spectroscopy of GdCrO3 nanoparticles. J. Appl. Phys. 107, 013912 (2010)

    Article  Google Scholar 

  13. J. Shi, T. Sauyet, Y. Dang, S.L. Suib, M.S. Seehra, M. Jain, Structure–property correlations and scaling in the magnetic and magnetocaloric properties of GdCrO3 particles. J. Phys. Condens. Matter 33, 205801 (2021)

    Article  CAS  Google Scholar 

  14. S. Yin, W. Zhong, C.J. Guild, J. Shi, S.L. Suib, C.L. Fernando, M. Jain, Effect of Gd substitution on the structural, magnetic, and magnetocaloric properties of HoCrO3. J. Appl. Phys. 123, 053904 (2018)

    Article  Google Scholar 

  15. J. Shi, M.S. Seehra, Y. Dang, S.L. Suib, M. Jain, Comparison of the dielectric and magnetocaloric properties of bulk and film of GdFe0.5Cr0.5O3. J. Appl. Phys. 129, 243904 (2021)

    Article  CAS  Google Scholar 

  16. P. Gupta, R. Bhargava, R. Das, P. Poddar, Static and dynamic magnetic properties and effect of surface chemistry on the morphology and crystallinity of DyCrO3 nanoplatelets. RSC Adv. 3, 26427–26432 (2013)

    Article  CAS  Google Scholar 

  17. S. Yin, T. Sauyet, M.S. Seehra, M. Jain, Particle size dependence of the magnetic and magneto-caloric properties of HoCrO3. J. Appl. Phys. 121, 063902 (2017)

    Article  Google Scholar 

  18. A.T. Apostolov, I.N. Apostolova, J.M. Wesselinowa, Magnetic and dielectric properties of pure and ion doped RCrO3 nanoparticles. Eur. Phys. J. B (2019). https://doi.org/10.1140/epjb/e2019-100112-x

    Article  Google Scholar 

  19. L.H. Yin, J. Yang, X.C. Kan, W.H. Song, J.M. Dai, Y.P. Sun, Giant magnetocaloric effect and temperature induced magnetization jumping GdCrO3 single crystal. J. Appl. Phys. 117, 133901 (2015)

    Article  Google Scholar 

  20. S. Mahana, U. Manju, D. Topwal, GdCrO3: a potential candidate for low temperature magnetic refrigeration. J. Phys. D 51, 305002 (2018)

    Article  Google Scholar 

  21. D.J. Keeble, S. Singh, R.A. Mackie, M. Morozov, S. McGuire, D. Damjanovic, A positron annihilation lifetime spectroscopy study. Phys. Rev. B 76, 144109 (2007)

    Article  Google Scholar 

  22. A. Jaiswal, R. Das, S. Adyanthaya, P. Poddar, Synthesis and optical studies of GdCrO3 nanoparticles. J. Nanopart. Res. 13, 1019–1027 (2011)

    Article  CAS  Google Scholar 

  23. P. Mohanty, B.S. Jacobs, A.R.E. Prinsloo, C.J. Sheppard, Thermal decomposition of GdCrO4 to GdCrO3: structure and magnetism. AIP Adv. 11, 015235 (2021)

    Article  CAS  Google Scholar 

  24. Z. Ma, G. Liu, W. Gao, Y. Liu, L. Xie, X. He, L. Liu, Y. Li, H. Zhang, The tunable spin reorientation, temperature induced magnetization reversal, and spontaneous exchange bias effect of Sm0.7Y0.3Cr1−xGaxO3. RSC Adv. 8, 33487–33495 (2018)

    Article  CAS  Google Scholar 

  25. S. Biswas, S. Pal, Magnetic and transport properties of Gd1−xCaxCrO3 (x = 0.0–0.3): effect of orbital degeneracy in thermoelectric power. Ceram. Int. 41(10), 14712 (2015)

    Article  CAS  Google Scholar 

  26. J. Prado-Gonjal, R. Schmidt, J.J. Romero, D. Avila, U. Amador, E. Moran, Microwave-assisted synthesis, microstructure, and physical properties of rare-earth chromites. Inorg. Chem. 52, 313–320 (2013)

    Article  CAS  Google Scholar 

  27. A. Sarkar, B. Dalal, S.K. De, Optical and magnetic properties of Gd1−xSrxCrO3 (0 ≤ x ≤ 0.15). J. Phys. Condens. Matter 31, 505801 (2019)

    Article  CAS  Google Scholar 

  28. C. Shi, Y. Su, J. Guo, J. Zhang, G. Gong, H. Hu, Y. Wang, The microstructure and magnetic properties of Ca2+ ion doped GdCrO3. Ceram. Int. 47, 10887–10892 (2020)

    Article  Google Scholar 

  29. T. Li, J. Chen, D. Liu, Z. Zhang, Z. Chen, Z. Li, X. Cao, B. Wang, Effect of NiO-doping on the microstructure and the dielectric properties of CaCu3Ti4O12 ceramics. Ceram. Int. 40, 9061–9067 (2014)

    Article  CAS  Google Scholar 

  30. H. Dai, F. Ye, Z. Chen, T. Li, D. Liu, The effect of ion doping at different sites on the structure, defects and multiferroic properties of BiFeO3 ceramics. J. Alloys Compd. 734, 60–65 (2018)

    Article  CAS  Google Scholar 

  31. S. Mahana, U. Manju, D. Topwal, Complex magnetic behavior in GdCrO3. AIP Conf. Proc. 1832, 130046 (2017)

    Article  Google Scholar 

  32. S. Yin, M.S. Seehra, C.J. Guild, S.L. Suib, N. Poudel, B. Lorenz, M. Jain, Magnetic and magnetocaloric properties of HoCrO3 tuned by selective rare-earth doping. Phys. Rev. B 95, 184421.1-184421.12 (2017)

    Google Scholar 

  33. K. Yoshii, Magnetic properties of perovskite GdCrO3. J. Solid State Chem. 159(1), 204–208 (2001). https://doi.org/10.1006/jssc.2000.9152

    Article  CAS  Google Scholar 

  34. A.H. Cooke, D.M. Martin, M.R. Wells, Magnetic interactions in gadolinium orthochromite, GdCrO3. J. Phys. C 7, 3133 (2001)

    Article  Google Scholar 

  35. Y. Liu, H. Peng, J. Wei, H. Zhang, The crystal structure, Raman spectra, and magnetic properties of HoCrO3 annealed in different atmospheres. J. Supercond. Nov. Magn. 32, 1741–1749 (2019)

    Article  CAS  Google Scholar 

  36. S. Yin, M. Jain, Enhancement in magnetocaloric properties of holmium chromite by gadolinium substitution. J. Appl. Phys. 120, 043906 (2016)

    Article  Google Scholar 

  37. S. Kumar, I. Coondoo, M. Vasundhara, A.K. Patra, A.L. Kholkin, N. Panwar, Magnetization reversal behavior and magnetocaloric effect in SmCr0.85Mn0.15O3 chromites. J. Appl. Phys. 121, 043907.1-043907.7 (2017)

    Google Scholar 

  38. Z. Cheng, X. Wang, S.X. Dou, H. Kimura, K. Ozawa, A novel multiferroic system: rare earth chromates. J. Appl. Phys. 107, 09D905 (2010)

    Article  Google Scholar 

  39. S. Mahana, U. Manju, P. Nandi, E. Welter, K.R. Priolkar, D. Topwal, Role of local structural distortion in driving ferroelectricity in GdCrO3. Phys. Rev. B 97, 224107 (2018)

    Article  CAS  Google Scholar 

  40. A.T. Apostolov, I.N. Apostolova, J.M. Wesselinowa, Microscopic approach to the magnetoelectric coupling in RCrO3. Mod. Phys. Lett. B 29, 1550251 (2016)

    Article  Google Scholar 

  41. M.K. Sharma, T. Basu, K. Mukherjee, E.V. Sampathkumaran, Effect of rare-earth (Er and Gd) substitution on the magnetic and multiferroic properties of DyFe0.5Cr0.5O3. J. Phys. Condens. Matter 28, 426003 (2016)

    Article  Google Scholar 

  42. H. Dai, F. Ye, T. Li, Z. Chen, X. Cao, B. Wang, Impact of Li doping on the microstructure, defects, and physical properties of CuFeO2 multiferroic ceramics. Ceram. Int. 45(18), 24570 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of National Natural Science Fund of China (No. 61571403), Research Project of Department of Science and Technology in Henan Province (Nos. 192102210157, 202102210006, 202102210477) and the Key Research Project of Colleges and Universities of Henan Province (20A140029).

Author information

Authors and Affiliations

Authors

Contributions

HH was responsible for drafting the manuscript, as well as the acquisition, analysis, and interpretation of data. YS contributed to the conception of the study. GG and YW helped perform the analysis with constructive discussions. CS and JZ helped to perform the experiments and collect data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuling Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Su, Y., Shi, C. et al. Influence of particle size on the magnetocaloric and dielectric properties of GdCrO3. J Mater Sci: Mater Electron 33, 12113–12125 (2022). https://doi.org/10.1007/s10854-022-08171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08171-3

Navigation