Skip to main content
Log in

LaAlO3: a new high-temperature negative temperature coefficient thermistor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the electrical properties of LaAlO3 prepared via spark plasma sintering (SPS) technique at 1650, 1700, and 1750 °C, are studied for the first time. X-ray diffraction (XRD) results show that sintered samples are pure phase lanthanum aluminate. The electrical characteristics of sintered samples are measured through direct resistance–temperature (RT) and AC impedance method. According to the R-T results illustrate, sintered samples show a typical NTC characteristic in two temperature ranges of 200 °C to 400 °C and 600 °C to 800 °C, with resistivity ρ200 from 7.23 × 1010 Ω·cm to 1.71 × 1011 Ω·cm, B200/400 from 8903 to 9547 K, and B600/800 from 17,477 to 20,331 K. According to AC impedance results, a conduction mechanism-based small polarons and oxygen vacancies work in LaAlO3 from 200 to 400 °C and from 600 to 800 °C. These results reveal that LaAlO3 is a promising material for high-temperature NTC thermistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Chen, J. Wang, J. Yao, A. Chang, B. Wang, Pd/Ag thin film deposited on negative temperature coefficient (NTC) ceramics by direct current magnetron sputtering. Vacuum 167, 227–233 (2019). https://doi.org/10.1016/j.vacuum.2019.06.005

    Article  CAS  Google Scholar 

  2. M.-M. Cui, X. Zhang, K.-G. Liu, H.-B. Li, M.-M. Gao, S. Liang, Fabrication of nano-grained negative temperature coefficient thermistors with high electrical stability. Rare Met. 40(4), 1014–1019 (2019). https://doi.org/10.1007/s12598-019-01294-3

    Article  CAS  Google Scholar 

  3. F. Guan, Z.-W. Dang, S.-F. Huang, J.-R. Wang, I. Milisavljevic, D. Carloni, X. Cheng, Y.-Q. Wu, LaCr1-xFexO3 (0≤x≤0.7): a novel NTC ceramic with high stability. J. Eur. Ceram. Soc. 40(15), 5597–5601 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.05.081

    Article  CAS  Google Scholar 

  4. S. Liang, D. Zhao, M. Cui, H. Li, X. Zhang, Two-step sintering of submicro-grain Ni0.54Mn126Fe12O4 NTC ceramics with an excellent electrical performance. J. Mater. Sci: Mater. Electron. 30(22), 20144–20153 (2019). https://doi.org/10.1007/s10854-019-02388-5

    Article  CAS  Google Scholar 

  5. T. Liu, H. Zhang, P. Ma, A. Chang, H. Jiang, Core–shell NTC materials with low thermal constant and high resistivity for wide-temperature thermistor ceramics. J. Am. Ceram. Soc. 102(8), 4393–4398 (2019). https://doi.org/10.1111/jace.16418

    Article  CAS  Google Scholar 

  6. B. Wang, J. Wang, A. Chang, J. Yao, Bismuth trioxide-tailored sintering temperature, microstructure and NTCR characteristics of Mn1.1Co1.5Fe04O4 ceramics. RSC Adv. 9(44), 25488–25495 (2019). https://doi.org/10.1039/c9ra04676c

    Article  CAS  Google Scholar 

  7. X. Zhang, S. Yao, D. Zhao, S. Liang, Nano-negative temperature coefficient thermistor with unique electrical properties of high B constant and low resistivity. J. Mater. Sci.: Mater. Electron. 32(4), 5222–5232 (2021). https://doi.org/10.1007/s10854-021-05254-5

    Article  CAS  Google Scholar 

  8. W. Yan, H. Zhang, X. Wang, C. You, Z. Li, Characterization of electrical conductivity and temperature sensitivity of Cr/Sb-modified SnO2 ceramics. J. Mater. Sci.: Mater. Electron. 31(5), 4040–4049 (2020). https://doi.org/10.1007/s10854-020-02951-5

    Article  CAS  Google Scholar 

  9. G. Jiang, Z. Li, C. You, W. Hao, Z. Ma, H. Zhang, Temperature sensitivity and electrical stability of Sb/Mn co-doped SnO2 ceramics. J. Mater. Sci.: Mater. Electron. 32(12), 16945–16955 (2021). https://doi.org/10.1007/s10854-021-06258-x

    Article  CAS  Google Scholar 

  10. M. Chen, H. Zhang, T. Liu, H. Jiang, A. Chang, Preparation, structure and electrical properties of La1−xBaxCrO3 NTC ceramics. J. Mater. Sci.: Mater. Electron. 28(24), 18873–18878 (2017). https://doi.org/10.1007/s10854-017-7839-9

    Article  CAS  Google Scholar 

  11. Q. Ma, Q. Zhao, X. Jia, D. He, A. Chang, Preparation and characterization for LaMnO3 and 03LaMnO3–07Y2O3 high temperature bilayer structure NTC thermistors. J. Mater. Sci.: Mater. Electron. 30(12), 11005–11010 (2019). https://doi.org/10.1007/s10854-019-01441-7

    Article  CAS  Google Scholar 

  12. J. Yang, H. Zhang, X. Sang, A. Chang, Z. Su, Study on ion migration characteristics and aging stability of MgTiO3 and LaTiO3 composites ceramic for high temperature negative temperature coefficient ceramics. J. Mater. Sci.: Mater. Electron. 31(9), 7067–7075 (2020). https://doi.org/10.1007/s10854-020-03276-z

    Article  CAS  Google Scholar 

  13. T. Liu, H. Zhang, J. Zhou, A. Chang, H. Jiang, Novel thermal-sensitive properties of NBT-BZT composite ceramics for high-temperature NTC thermistors. J. Am. Ceram. Soc. 103(1), 48–53 (2019). https://doi.org/10.1111/jace.16774

    Article  CAS  Google Scholar 

  14. Y. Wang, B. Gao, Q. Wang, X. Li, Z. Su, A. Chang, A2Zr2O7 (A = Nd, Sm, Gd, Yb) zirconate ceramics with pyrochlore-type structure for high-temperature negative temperature coefficient thermistor. J. Mater. Sci. 55(32), 15405–15414 (2020). https://doi.org/10.1007/s10853-020-05104-5

    Article  CAS  Google Scholar 

  15. L.A. Villas-Boas, C.A. Goulart, D.S. Ferreira, Effects of Sr and Mn co-doping on microstructural evolution and electrical properties of LaAlO3. Process Appl Ceram. 13(4), 333–41 (2019)

    Article  Google Scholar 

  16. L.A. Villas-Boas, D.P.F. de Souza, The effect of Pr co-doping on the densification and electrical properties of Sr-LaAlO3. Mater. Res. 16(5), 982–989 (2013). https://doi.org/10.1590/s1516-14392013005000087

    Article  CAS  Google Scholar 

  17. A.K.H. Bashir, K. Kaviyarasu, J. Sackey, L. Kotsedi, M. Maaza, Electrical resistivity, magnetic properties and thermoelectric power factor of the polycrystalline compound CeCu4In: effect of La dilution. Surf. Interfaces (2020). https://doi.org/10.1016/j.surfin.2019.100413

    Article  Google Scholar 

  18. R. Elamathi, R. Ramesh, M. Aravinthraj, M. Manivannan, F. Liakath Ali Khan, K. Mphale, D. Letsholathebe, K. Kaviyarasu, J. Kennedy, M. Maaza, Investigation of structural and electrical properties of lithium cobalt oxide nanoparticles for optoelectronic applications. Surf. Interfaces (2020). https://doi.org/10.1016/j.surfin.2020.100582

    Article  Google Scholar 

  19. G. Jayakumar, A. Albert Irudayaraj, A. DhayalRaj, S. JohnSundaram, K. Kaviyarasu, Electrical and magnetic properties of nanostructured Ni doped CeO2 for optoelectronic applications. J. Phys. Chem. Solids. (2022). https://doi.org/10.1016/j.jpcs.2021.110369

    Article  Google Scholar 

  20. P. Mohamed Anwar, S. Muruganantham, M. Karunanithy, M. Benhaliliba, A. Ayeshamariam, M. Jayachandran, K. Kaviyarasu, Optical, structural and electrical properties of AgSbO3 nanotips prepared by thermal evaporation technique for thermoelectric effect applications. Mater. Today 36, 492–498 (2021). https://doi.org/10.1016/j.matpr.2020.05.148

    Article  CAS  Google Scholar 

  21. H. Zhang, Q. Liu, J. Wang, K. Chen, D. Xue, J. Liu, X. Lu, Boosting the Zn-ion storage capability of birnessite manganese oxide nanoflorets by La3+ intercalation. J. Mater. Chem. A 7(38), 22079–22083 (2019). https://doi.org/10.1039/c9ta08418e

    Article  CAS  Google Scholar 

  22. D.J. Deka, J. Kim, S. Gunduz, D. Jain, Y. Shi, J.T. Miller, A.C. Co, U.S. Ozkan, Coke formation during high-temperature CO2 electrolysis over AFeO3 (A = La/Sr) cathode: effect of A-site metal segregation. Appl. Catal. B (2021). https://doi.org/10.1016/j.apcatb.2020.119642

    Article  Google Scholar 

  23. P. Motamedi, K. Cadien, XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition. Appl. Surf. Sci. 315, 104–109 (2014). https://doi.org/10.1016/j.apsusc.2014.07.105

    Article  CAS  Google Scholar 

  24. S. Guodong, L. Hui, D. Juanli, Z. Wenxue, Z. Hongyan, L. Lu, Effects of oxygen vacancy on the electronic structure of cubic LaAlO3. Rare Met. Mater. Eng. 44(5), 1099–1103 (2015). https://doi.org/10.1016/s1875-5372(15)30074-6

    Article  Google Scholar 

  25. J.H. Kim, Y.J. Jang, J.H. Kim, J.W. Jang, S.H. Choi, J.S. Lee, Defective ZnFe(2)O(4) nanorods with oxygen vacancy for photoelectrochemical water splitting. Nanoscale 7(45), 19144–19151 (2015). https://doi.org/10.1039/c5nr05812k

    Article  CAS  Google Scholar 

  26. A. Durán, L. Moxca, H. Tiznado, J.M. Romo-Herrera, M. Herrera, J.M. Siqueiros, A. Belik, YCrO3/Al2O3 core-shell design: the effect of the nanometric Al2O3-shell on dielectric properties. J. Am. Ceram. Soc. 99(10), 3382–3388 (2016). https://doi.org/10.1111/jace.14369

    Article  CAS  Google Scholar 

  27. O. Raymond, R. Font, J. Portelles, N. Suárez-Almodovar, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors. III. Dielectric relaxation near the transition temperature. J. Appl. Phys. 99(12), 10 (2006). https://doi.org/10.1063/1.2201853

    Article  CAS  Google Scholar 

  28. Q. Wang, S. Leng, Y. Yu, Activation energy of small polarons and conductivity in LiNbO3 and LiTaO3 crystals. Physica Status Solidi B 194(2), 661–665 (1996)

    Article  CAS  Google Scholar 

  29. C. Mitra, C. Lin, J. Robertson, A.A. Demkov, Electronic structure of oxygen vacancies in SrTiO3 and LaAlO3. Phys. Rev. B 86(15), 155 (2012). https://doi.org/10.1103/PhysRevB.86.155105

    Article  CAS  Google Scholar 

  30. R. Rai, I. Coondoo, R. Rani, I. Bdikin, S. Sharma, A.L. Kholkin, Impedance spectroscopy and piezoresponse force microscopy analysis of lead-free (1–x) K0.5Na0.5NbO3 − xLiNbO3 ceramics. Curr. Appl. Phys. 13(2), 430–440 (2013). https://doi.org/10.1016/j.cap.2012.09.009

    Article  Google Scholar 

  31. T. Mondal, S. Das, T. Badapanda, T.P. Sinha, P.M. Sarun, Effect of Ca2+ substitution on impedance and electrical conduction mechanism of Ba1−xCaxZr0.1Ti09O3 (0.00≤x≤0.20) ceramics. Physica B 508, 124–135 (2017). https://doi.org/10.1016/j.physb.2016.12.021

    Article  CAS  Google Scholar 

  32. M.A. Rafiq, M.N. Rafiq, K. Venkata Saravanan, Dielectric and impedance spectroscopic studies of lead-free barium-calcium-zirconium-titanium oxide ceramics. Ceram. Int. 41(9), 11436–11444 (2015). https://doi.org/10.1016/j.ceramint.2015.05.107

    Article  CAS  Google Scholar 

  33. A. Shukla, R.N.P. Choudhary, A.K. Thakur, Thermal, structural and complex impedance analysis of Mn4+ modified BaTiO3 electroceramic. J. Phys. Chem. Solids 70(11), 1401–1407 (2009). https://doi.org/10.1016/j.jpcs.2009.08.015

    Article  CAS  Google Scholar 

  34. J.T. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2(3), 132–138 (1990)

    Article  CAS  Google Scholar 

  35. N. Padmamalini, K. Ambujam, Structural and dielectric properties of ZrO2 –TiO 2 –V 2 O 5 nanocomposite prepared by CO-precipitation calcination method. Mater. Sci. Semicond. Process. 41, 246–251 (2016). https://doi.org/10.1016/j.mssp.2015.09.009

    Article  CAS  Google Scholar 

  36. N. Padmamalini, K. Ambujam, Impedance and modulus spectroscopy of ZrO2–TiO2–V2O5 nanocomposite. Karbala Int J Mod Sci 2(4), 271–275 (2016). https://doi.org/10.1016/j.kijoms.2016.10.001

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51862028, No. 52104358) and Natural Science Foundation of Ningxia (No. 2021AAC03219, No. 2020AAC03005).

Author information

Authors and Affiliations

Authors

Contributions

XZ and WC contributed to analysis and manuscript preparation; WC and HB performed the experiment; and SL contributed to the conception of the study. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Sen Liang.

Ethics declarations

Conflict of interest

We warrant that the article is the authors' original work and that the article has not received prior publication and is not under consideration for publication elsewhere. On behalf of all co-authors, the corresponding author shall bear full responsibility for the submission. We confirm that each of the authors has no conflict of interest to declare in connection with the work submitted and that each of the authors has no commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Data availability

The data used to support the findings of this study are included within the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chu, W., Bai, H. et al. LaAlO3: a new high-temperature negative temperature coefficient thermistor. J Mater Sci: Mater Electron 33, 12093–12103 (2022). https://doi.org/10.1007/s10854-022-08169-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08169-x

Navigation