Skip to main content
Log in

Study of linear and non-linear optical properties of In–Se doped chalcogenide semiconducting glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work focuses on the various linear and non-linear optical properties of antimony (Sb) and gallium (Ga) (both 0.1 at.%) doped Indium selenide chalcogenide glass semiconductors for optoelectronic applications. The bulk samples were synthesized via the melt quench approach and the films were prepared by the thermal evaporation method from the synthesized bulk. These samples were characterized by XRD and UV–Vis spectroscopy. The optical band-gap of all synthesized films was calculated with the help of Tauc’s plot. The linear refractive index of the synthesized samples was obtained through the transmission spectra using the Swanepoel method. Linear parameters such as absorption coefficient and extinction coefficient were determined using the absorption data. Wemple DiDomenico model was used to calculate parameters oscillator energy (Eo), dispersive energy (Ed), and static refractive index (no). First-order non-linear susceptibility (χ1) has been determined by using the static refractive index in the long-wavelength region. Non-linear index of refraction (n2) and third-order non-linear susceptibility (χ3) is investigated using the Tichy and Ticha relation with the combination of Miller’s generalized rule. Improved non-linearity in antimony doped InSe4 films makes these useful for non-linear optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Derived data supporting the findings of this study are available from the crossponding author on request.

References

  1. K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, M. Minakata, Opt. Lett. 29(3), 265–267 (2004)

    Article  CAS  Google Scholar 

  2. M. Asobe, T. Ohara, I. Yokohama, T. Kaino, Electron. Lett. 32(15), 1396–1397 (1996)

    Article  CAS  Google Scholar 

  3. B.J. Eggleton, B. Luther-Davies, K. Richardson, Nat. Photonics 5(3), 141–148 (2011)

    Article  CAS  Google Scholar 

  4. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. Hu, Nat. Photonics 8(8), 643–649 (2014)

    Article  CAS  Google Scholar 

  5. E. Romanova, Y.S. Kuzyutkina, A.I. Konyukhov, N. Abdel-Moneim, A.B. Seddon, T.M. Benson, A. Mouskeftaras, Opt. Eng. 53(7), 071812 (2014)

    Article  CAS  Google Scholar 

  6. G. Lenz, J. Zimmermann, T. Katsufuji, M.E. Lines, H.Y. Hwang, S. Spälter, I. Aggarwal, Opt. Lett. 25(4), 254–256 (2000)

    Article  CAS  Google Scholar 

  7. J. Ren, B. Li, T. Wagner, H. Zeng, G. Chen, Opt. Mater. 36(5), 911–915 (2014)

    Article  CAS  Google Scholar 

  8. K. Terashima, T. Hashimoto, T. Uchino, S.H. Kim, T. Yoko, J. Ceram. Soc. Jpn. 104(1215), 1008–1014 (1996)

    Article  CAS  Google Scholar 

  9. E.M. Vogel, J. Am. Ceram. Soc. 72(5), 719–724 (1989)

    Article  CAS  Google Scholar 

  10. E.M. Vogel, M.J. Weber, D. Krol, Phys. Chem. Glasses 32(6), 231–254 (1991)

    CAS  Google Scholar 

  11. E.M. Vogel, J.S. Wang, E. Snitzer, J.L. Jackel, V.L. Da Silva, Y. Silberberg, J. Non-Cryst. Solids 178, 109–113 (1994)

    Article  Google Scholar 

  12. F. Smektala, C. Quemard, V. Couderc, A. Barthélémy, J. Non-Cryst. Solids 274(1–3), 232–237 (2000)

    Article  CAS  Google Scholar 

  13. N.K. Chen, P.W. Kuan, J. Zhang, L. Zhang, L. Hu, C. Lin, L. Tong, Opt. Express 18(25), 25615–25626 (2010)

    Article  CAS  Google Scholar 

  14. C.Y. Tai, J.S. Wilkinson, N.M. Perney, M.C. Netti, F. Cattaneo, C.E. Finlayson, J.J. Baumberg, Opt. Express 12(21), 5110–5116 (2004)

    Article  CAS  Google Scholar 

  15. M. Shkir, H. Abbas, Spectrochim. Acta A 125, 453–457 (2014)

    Article  CAS  Google Scholar 

  16. M. Shkir, S. AlFaify, V. Ganesh, I.S. Yahia, H. Algarni, H. Shoukry, J. Mater. Sci.: Mater. Electron. 27(10), 10673–10683 (2016)

    CAS  Google Scholar 

  17. K. Seevakan, P. Antony Lyla, Int. J. Pure Appl. Math. 119(12), 5535–5545 (2018)

    Google Scholar 

  18. M.H. Jiang, Q. Fang, Adv. Mater. 11(13), 1147–1151 (1999)

    Article  CAS  Google Scholar 

  19. V.G. Ta’eed, N. Baker, L. Fu, K. Finsterbusch, M.R.E. Lamont, H.C. Nguyen, B.J. Eggleton, Y. Choi, S. Madden, B. Luther-Davies, Opt. Express 15, 9205 (2007)

    Article  Google Scholar 

  20. V. Sharma, J. Phys.: Condens. Matter 18(45), 10279 (2006)

    CAS  Google Scholar 

  21. N.L. Boling, A. Glass, A. Owyoung, IEEE J. Quantum Electron. 14(8), 601–608 (1978)

    Article  CAS  Google Scholar 

  22. V.G. Ta’eed, M.R. Lamont, D.J. Moss, B.J. Eggleton, D.Y. Choi, S. Madden, B. Luther-Davies, Opt. express 14(23), 11242–11247 (2006)

    Article  Google Scholar 

  23. V.G. Ta’eed, L. Fu, M. Pelusi, M. Rochette, I.C. Littler, D.J. Moss, B.J. Eggleton, Opt. Express 14(22), 10371–10376 (2006)

    Article  Google Scholar 

  24. K.S. Abedin, Opt. Express 14(9), 4037–4042 (2006)

    Article  CAS  Google Scholar 

  25. M. Asobe, H. Itoh, T. Miyazawa, T. Kanamori, Electron. Lett. 29(22), 1966–1968 (1993)

    Article  CAS  Google Scholar 

  26. R.E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L.B. Shaw, I.D. Aggarwal, JOSA B 21(6), 1146–1155 (2004)

    Article  CAS  Google Scholar 

  27. L.B. Fu, M. Rochette, V.G. Ta’eed, D.J. Moss, B.J. Eggleton, Opt. Express 13, 763 (2005)

    Article  Google Scholar 

  28. L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, G. Boudebs, Opt. Lett. 31(10), 1495–1497 (2006)

    Article  CAS  Google Scholar 

  29. B.J. Eggleton, B.L. Davies, K. Richardson, Nat. Photonics 5, 141–148 (2011)

    Article  CAS  Google Scholar 

  30. J.M. Morris, M.D. Mackenzie, C.R. Petersen, G. Demetriou, A.K. Kar, O. Bang, H.T. Bookey, Opt. Mater. Express 8(4), 1001–1011 (2018)

    Article  CAS  Google Scholar 

  31. M.R. Krogstad, S. Ahn, W. Park, J.T. Gopinath, Opt. Express 23(6), 7870–7878 (2015)

    Article  CAS  Google Scholar 

  32. J. Zhou, Q. Du, P. Xu, Y. Zhao, R. Lin, Y. Wu, X. Shen, IEEE J. Sel. Top. Quantum Electron. 24(4), 1–6 (2018)

    Article  Google Scholar 

  33. P. Sharma, N. Sharma, S. Sharda, S.C. Katyal, V. Sharma, Prog. Solid State Chem. 44(4), 131–141 (2016)

    Article  CAS  Google Scholar 

  34. A. Dahshan, P. Sharma, K.A. Aly, Infrared Phys. Technol. 102, 102997 (2019)

    Article  CAS  Google Scholar 

  35. M.S. El-Bana, R. Bohdan, S.S. Fouad, J. Alloys Compd. 686, 115–121 (2016)

    Article  CAS  Google Scholar 

  36. M.S. El-Bana, S.S. Fouad, Appl. Phys. A 124(2), 1–8 (2018)

    Article  CAS  Google Scholar 

  37. J. Tauc (ed.), Amorphous and Liquid Semiconductors (Springer Science & Business Media, Berlin, 2012)

    Google Scholar 

  38. P. Singh, R. Kaur, P. Sharma, V. Sharma, A. Thakur, J. Mater. Sci.: Mater. Electron. 29(2), 1042–1047 (2018)

    CAS  Google Scholar 

  39. R. Swanepoel, J. Phys. E 16(12), 1214 (1983)

    Article  CAS  Google Scholar 

  40. J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys. E 9(11), 1002 (1976)

    Article  CAS  Google Scholar 

  41. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Oxford University Press, Oxford, 2012)

    Google Scholar 

  42. R.P. Tripathi, M.S. Akhtar, S.A. Khan, Mater. Focus 7(2), 251–258 (2018)

    Article  CAS  Google Scholar 

  43. M. Shkir, M.T. Khan, V. Ganesh, I.S. Yahia, B.U. Haq, A. Almohammedi, S. AlFaify, Opt. Laser Technol. 108, 609–618 (2018)

    Article  CAS  Google Scholar 

  44. P. Sharma, V.S. Rangra, P. Sharma, S.C. Katyal, J. Phys. D 41(22), 225307 (2008)

    Article  CAS  Google Scholar 

  45. M.D. Sharma, N. Goyal, J. Ovonic Res. Vol. 14(1), 145–154 (2018)

    CAS  Google Scholar 

  46. M.M. Soraya, Appl. Phys. A 126(8), 1–9 (2020)

    Article  CAS  Google Scholar 

  47. S.M. Elkatlawy, A.H. El-Dosokey, H.M. Gomaa, Boletín de la Sociedad Española de Cerámica y Vidrio (2020). https://doi.org/10.1016/j.bsecv.2020.09.007

  48. P. Sharma, K.A. Aly, D.C. Sati, A. Dahshan, Appl. Phys. A 126(3), 1–9 (2020)

    Article  CAS  Google Scholar 

  49. S. Mishra, P. Lohia, D.K. Dwivedi, Infrared Phys. Technol. 100, 109–116 (2019)

    Article  CAS  Google Scholar 

  50. F. Chen, J. Zhang, C. Cassagne, G. Boudebs, J. Am. Ceram. Soc. 103(9), 5050–5055 (2020)

    Article  CAS  Google Scholar 

  51. A. Prasad, A.K. Saxena, IOSR J. Appl. Phys. 11, 29–30 (2019)

    Google Scholar 

  52. N. Nedelcu, V. Chiroiu, L. Munteanu, I. Girip, Mater. Res. Express 7(6), 066403 (2020)

    Article  CAS  Google Scholar 

  53. Q. Li, R. Wang, F. Xu, X. Wang, Z. Yang, X. Gai, Opt. Mater. Express 10(6), 1413–1420 (2020)

    Article  CAS  Google Scholar 

  54. N. Sharma, S. Sharda, S.C. Katyal, V. Sharma, P. Sharma, Electron. Mater. Lett. 10(1), 101–106 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. Pumlian Munga (Dept. of Physics, Jamia Milia Islamia Dehli-110025) for providing the facilities for film synthesis. Also I would like to thank Department of Science and Technology (DST) for providing infrastructure grant under “Fund for Improvement of S & T Infrastructure in Universities and Higher Educational Institutions” (FIST) scheme.

Funding

Department of Science and Technology (DST) for providing infrastructure grant under “Fund for Improvement of S &T Infrastructure in Universities and Higher Educational Institutions” (FIST) scheme.

Author information

Authors and Affiliations

Authors

Contributions

KY: Investigation, conceptualization, Methodology, writing original draft, project administration. DM: Supervision, writing & review & editing. SS: Co-supervision & review.

Corresponding author

Correspondence to Kavita Yadav.

Ethics declarations

Conflict of interest

The authors declare no competing interests and all co-authors have approved the contents of this manuscript and submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, K., Mohan, D. & Sanghi, S. Study of linear and non-linear optical properties of In–Se doped chalcogenide semiconducting glasses. J Mater Sci: Mater Electron 33, 12062–12074 (2022). https://doi.org/10.1007/s10854-022-08166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08166-0

Navigation