Skip to main content
Log in

Effect of various polymer additives on the rheology and thixotropy of organic vehicles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the contents of ethyl cellulose (EC) as thickener in organic vehicle, which also acts as a binder, was examined using various control experiments; dibutyl phthalate (DBP) and dioctyl phthalate (DOP) were used as plasticizers, and acrylic resin (AR) was used as the thixotropic agent. In addition to thixotropic index, Bigham and Casson yield stress models were used for simulation, and the organic vehicle was dynamically simulated via the three interval thixotropy test; the viscosity recovery of the organic vehicle was investigated on the removal of shear stress. When the contents of the plasticizers, DBP and DOP, were 4 wt% and 6 wt%, respectively, the content of the thickener, EC, was 12 wt% and that of the thixotropic agent, AR, was 2 wt%, the comprehensive performance of the organic vehicle was greatly improved, especially in terms of thixotropy and recovery behavior. Our results demonstrate that the current organic vehicle is promising for the application of silver pastes used as inner electrodes in low-temperature co-fired ceramic (LTCC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript (and its supplementary information files) or can be available from the corresponding author on reasonable request.

References

  1. Y. Hu et al., Effects of organic additives on the microstructural, rheological and electrical properties of silver paste for LTCC applications. J. Mater. Sci.: Mater. Electron. 32(11), 14368–14384 (2021)

    CAS  Google Scholar 

  2. R. Faddoul, N. Reverdy-Bruas, A. Blayo, Formulation and screen printing of water based conductive flake silver paste onto green ceramic tapes for electronic applications. Mater. Sci. Eng. B 177(13), 1053–1066 (2012)

    Article  CAS  Google Scholar 

  3. H.-W. Lin et al., The rheological behaviors of screen printing paste. J. Mater. Process. Technol. 197(1), 284–291 (2008)

    Article  CAS  Google Scholar 

  4. F. Hoeng et al., Rheology of cellulose nanofibrils/silver nanowires suspension for the production of transparent and conductive electrodes by screen printing. Appl. Surf. Sci. 394, 160–168 (2017)

    Article  CAS  Google Scholar 

  5. Y. Zhou, H. Tong, Y. Liu et al., Rheological effect on screen-printed morphology of thick film silver paste metallization. J. Mater. Sci.: Mater. Electron. 28(7), 5548–5553 (2017)

    CAS  Google Scholar 

  6. J.-S. Jiang et al., Performances of screen printing silver thick films: rheology, morphology, mechanical and electronic properties. Mater. Chem. Phys. 176, 96–103 (2016)

    Article  CAS  Google Scholar 

  7. A. Safavi, M. Tohidi, Silver paste nanocomposite electrode as a new metallic electrode for amperometric determination of hydrazine. Anal. Methods 4(8), 2233–2241 (2012)

    Article  CAS  Google Scholar 

  8. W.J. Tseng, C.N. Chen, Effect of polymeric dispersant on rheological behavior of nickel–terpineol suspensions. Mater. Sci. Eng. A 347(1–2), 145–153 (2003)

    Article  Google Scholar 

  9. Y. Sun, X. Lu, Q. Zhang, et al., Mechanical properties of a novel multi-scale silver paste for electronics interconnect application. 2019 20th International Conference on Electronic Packaging Technology (ICEPT). IEEE, vol. 2019, pp. 1–4

  10. E.Y.Z. Frag, R.F. Aglan, H.A. Mohamed, Lanthanum(III) potentiometric sensors based on ethyl benzoyl acetate. Arab. J. Chem. 12(3), 388–397 (2019)

    Article  CAS  Google Scholar 

  11. E.Y.Z. Frag, M.M. Omar, H.A. Mohamed, Electrochemical characterization of vanadium (V) sensors modified with 2,4-dinitrophenyl hydrazine. Studying the reaction mechanism using SEM and IR. J. Electroanal. Chem. 784, 124–132 (2017)

    Article  CAS  Google Scholar 

  12. E.Y. Frag, N.A. Abd El-Ghany, M.A.E.L. Fattah, Physico-chemical properties and characterization of iron (II) electrochemical sensor based on carbon paste electrode modified with novel antimicrobial Carboxymethyl chitosan-graft-poly(1-cyanoethanoyl-4-acryloyl-thiosemcarbazide) copolymers. J. Electroanal. Chem. 808, 266–277 (2018)

    Article  CAS  Google Scholar 

  13. M.H. Mashhadizadeh et al., Determination of ultratrace levels of lead (II) in water samples using a modified carbon paste electrode based on a new podand. Mater. Sci. Eng. C 31(8), 1674–1680 (2011)

    Article  CAS  Google Scholar 

  14. T. Nie et al., General control method of wettability and rheological properties of organic medium—a key material for electronic paste. ACS Appl. Electron. Mater. 3(2), 861–871 (2021)

    Article  CAS  Google Scholar 

  15. H.I. Hsiang, C.C. Chen, L.F. Fan et al., Rheological behaviors of silver conductive pastes with ethyl cellulose. Circuit World (2020)

  16. H.O.U. Chengmin, K.O.U. Yanping, C.A.O. Congjun, Preparation of ethylcellulose-based conductive silver paste and properties of electronic paper. J. Funct. Mater. Gongneng Cailiao 59(11), 11014–11023 (2019)

    Google Scholar 

  17. D. Chen, L. Zhao, H. Diao et al., Rheological properties and related screen printing performance of low-temperature silver pastes for a-Si: H/c-Si heterojunction solar cells. J. Mater. Sci.: Mater. Electron. 25(12), 5322–5330 (2014)

    CAS  Google Scholar 

  18. C. Liu, Q. Fu, J. Zou et al., Effects of polyester resin molecular weight on the performance of low temperature curing silver pastes. J. Mater. Sci.: Mater. Electron. 27(6), 6511–6516 (2016)

    CAS  Google Scholar 

  19. J. Zhang, Y. Cui, H. Wang, Optimization of viscosity and thixotropy for organic medium to achieve high photovoltaic conversion efficiency of silicon solar cells. J. Renew. Sustain. Energy 5(2), 023117 (2013)

    Article  Google Scholar 

  20. J. Qin, S. Bai, W. Zhang et al., Effects of organic medium on rheological properties of silver pastes for crystalline silicon solar cells. Circuit World (2016)

  21. S.Y. Luo, J. Chen, W.C. Xu et al., Nano-silver paste with a low sintering temperature. Adv. Mater. Res. 391, 745–748 (2012)

    Google Scholar 

  22. R. Li et al., Influence of the properties of organic media in back-side silver paste on the electrical performance of polycrystalline silicon solar cells. RSC Adv. 6(49), 43732–43739 (2016)

    Article  CAS  Google Scholar 

  23. J.C. Lin, C.Y. Wang, Effects of surfactant treatment of silver powder on the rheology of its thick-film paste. Mater. Chem. Phys. 45(2), 136–144 (2010)

    Article  Google Scholar 

  24. M. Vincent, V.K. Gopalakrishnan, S. Sivanandan et al., Factors influencing rheological characteristics of silver thick film paste and its correlation to multilayer ceramic processing. Adv. Appl. Ceram. 118(3), 106–113 (2019)

    Article  CAS  Google Scholar 

  25. T.H. Chiang, Y.F. Chen, Y.C. Lin et al., The influence of dispersants that contain polyethylene oxide groups on the electrical resistivity of silver paste. J. Appl. Polym. Sci. 131(24), 1 (2014). https://doi.org/10.1002/app.41183

    Article  CAS  Google Scholar 

  26. H. Zhan, J. Guo, X. Yang et al., Silver frameworks based on self-sintering silver micro-flakes and its application in low temperature curing conductive pastes. J. Mater. Sci.: Mater. Electron. 30(24), 21343–21354 (2019)

    CAS  Google Scholar 

  27. C.R. Chang, J.H. Jean, Effects of silver-paste formulation on camber development during the cofiring of a silver-based, low-temperature-cofired ceramic package. J. Am. Ceram. Soc. 81(11), 2805–2814 (1998)

    Article  CAS  Google Scholar 

  28. R. Faddoul, N. Reverdy-Bruas, A. Blayo et al., Optimisation of silver paste for flexography printing on LTCC substrate. Microelectron. Reliab. 52(7), 1483–1491 (2012)

    Article  CAS  Google Scholar 

  29. J. Bangali et al., Silver thick film paste for low temperature co-fired ceramics: impact of glass frit variation. Solder. Surf. Mount Technol. 20(3), 41–46 (2008)

    Article  CAS  Google Scholar 

  30. C. Yüce, M. König, N. Willenbacher, Rheology and screen printing performance of model silver pastes for metallization of Si-solar cells. Coatings 8(11), 406 (2018)

    Article  Google Scholar 

  31. J.S. Jiang, J.E. Liang, H.L. Yi et al., Rheological fingerprints of time-evolving polymer-particle interaction and sol–gel transition in silver pastes. J. Polym. Res. 22(8), 1–11 (2015)

    Article  Google Scholar 

  32. J.S. Park, T. Kim, W.S. Kim, Conductive cellulose composites with low percolation threshold for 3D printed electronics. Sci. Rep. 7(1), 1–10 (2017)

    Article  Google Scholar 

  33. I. Dulina, S. Umerova, A. Ragulya, Plasticizer effect on rheological behaviour of screen printing pastes based on barium titanate nanopowder. J. Phys: Conf. Ser. 602(1), 012035 (2015)

    Google Scholar 

  34. E.Y.Z. Frag, G.G. Mohamed, F.A.N. El-Dien et al., Construction and performance characterization of screen printed and carbon paste ion selective electrodes for potentiometric determination of naphazoline hydrochloride in pharmaceutical preparations. Analyst 136(2), 332–339 (2011)

    Article  CAS  Google Scholar 

  35. J. Nie, M. Li, W. Liu et al., The role of plasticizer in optimizing the rheological behavior of ceramic pastes intended for stereolithography-based additive manufacturing. J. Eur. Ceram. Soc. 41(1), 646–654 (2021)

    Article  CAS  Google Scholar 

  36. F. Laboulfie, M. Hémati, A. Lamure et al., Effect of the plasticizer on permeability, mechanical resistance and thermal behaviour of composite coating films. Powder Technol. 238, 14–19 (2013)

    Article  CAS  Google Scholar 

  37. Q.W. Yang, M.P. Flament, F. Siepmann et al., Curing of aqueous polymeric film coatings: importance of the coating level and type of plasticizer. Eur. J. Pharm. Biopharm. 74(2), 362–370 (2010)

    Article  CAS  Google Scholar 

  38. K. Reinhardt, N. Hofmann, M. Eberstein, The importance of shear thinning, thixotropic and viscoelastic properties of thick film pastes to predict effects on printing performance. 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition. IEEE, vol. 2017, pp. 1–7

  39. Y.F. Tan, S.Q. Hao, H.W. Li et al., Effects of thixotropic agent and storage time on the rheological properties of epoxy resin. Appl. Mech. Mater. 217, 582–585 (2012)

    Article  Google Scholar 

  40. S.J. Sirdesai, G. Schaeffer, Thixotropic polymerizable nail sculpting compositions, US (2001)

  41. R. Durairaj, N.N. Ekere, B. Salam, Thixotropy flow behaviour of solder and conductive adhesive pastes. J. Mater. Sci.: Mater. Electron. 15(10), 677–683 (2004)

    CAS  Google Scholar 

  42. H.P.A. de Deus, G.S.P. Dupim, On behavior of the thixotropic fluids. Phys. Lett. A 377(6), 478–485 (2013)

    Article  Google Scholar 

  43. R. Faddoul, N. Reverdy-Bruas, J. Bourel, Silver content effect on rheological and electrical properties of silver pastes. J. Mater. Sci.: Mater. Electron. 23(7), 1415–1426 (2012)

    CAS  Google Scholar 

  44. S. Thibert, J. Jourdan, B. Bechevet et al., Influence of silver paste rheology and screen parameters on the front side metallization of silicon solar cell. Mater. Sci. Semicond. Process. 27, 790–799 (2014)

    Article  CAS  Google Scholar 

  45. J.W. Goodwin, R.W. Hughes, Rheology for Chemists: An Introduction. Front Cover (2008)

  46. C. Yüce, K. Okamoto, L. Karpowich et al., Non-volatile free silver paste formulation for front-side metallization of silicon solar cells. Solar Energy Mater. Solar Cells 200, 110040 (2019)

    Article  Google Scholar 

  47. S.D. Park, M.J. Yoo, N.K. Kang et al., Fabrication of photoimageable silver paste for low-temperature cofiring using acrylic binder polymers and photosensitive materials. Macromol. Res. 12(4), 391–398 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51772054).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: W.W. and Y.Y.; methodology: W.W., L.L., J.Z., and Y.H.; experiments: W.W. and Y.H.; characterization: L.L., J.Z., and Y.H.; writing—original draft preparation: W.W. and Y.Y.; writing—review and editing: W.W., Y.Y., and Y.H.; supervision: Y.Y.; project administration: J.Z.; funding acquisition: Y.Y. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yingbang Yao.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Ethical approval

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Hu, Y., Li, L. et al. Effect of various polymer additives on the rheology and thixotropy of organic vehicles. J Mater Sci: Mater Electron 33, 12002–12015 (2022). https://doi.org/10.1007/s10854-022-08161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08161-5

Navigation