Skip to main content
Log in

Low-temperature sintering coating of phosphor in TeO2–SiO2–B2O3–ZnO glass for enhanced luminous efficacy of white LED

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A low-temperature sintering coating of phosphor in glass (PiG) is applied to white light-emitting diode (WLED) packaging to improve its luminous efficacy. The PiG coating is used for packaging and as a white light converter. In this work, the PiG is prepared by low-temperature sintering of mixed TeO2–SiO2–B2O3–ZnO (TSBZ) glass matrix and Y3Al5O12:Ce3+ (YAG:Ce3+) phosphor powders. The coating of PiG is successfully fabricated on borosilicate glass substrate through multilayer screen-printing and low-temperature sintering processes. Glass transition temperature (Tg) of TSBZ glass, microstructure and thermal stability, luminescence spectra, and optical performances of PiG coating are investigated. As the mole percentage of TeO2 decreases, the Tg decreases. The microstructure suggests that the lower melting point of the glass matrix provides better wettability. Locations of emission and excitation peaks of PiG are not shifted and intensity of that is strengthened under low-temperature sintering according to luminescence spectra. CIE chromaticity coordinates show that the lights from LED encapsulated with PiG are in white-light region. The luminous efficacy is enhanced by up to 26.7%. The PiG coating provides great potentials for the application in WLED packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available in the article.

References

  1. S. Pimputkar, J.S. Speck, S.P. Denbaars et al., Prospects for LED lighting. Nat. Photon. 3(4), 180–182 (2009). https://doi.org/10.1038/nphoton.2009.32

    Article  CAS  Google Scholar 

  2. Y. Liu, J. Zou, M. Shi et al., Effect of phosphor composition and packaging structure of flexible phosphor films on performance of white LEDs. J. Mater. Sci.: Mater. Electron. 29(21), 18476–18485 (2018). https://doi.org/10.1007/s10854-018-9963-6

    Article  CAS  Google Scholar 

  3. P. Altieri-Weimar, A. Jaeger, T. Lutz et al., Influence of doping on the reliability of AlGaInP LEDs. J. Mater. Sci. 19, S338–S341 (2008). https://doi.org/10.1007/s10854-008-9575-7

    Article  CAS  Google Scholar 

  4. Y.H. Nam, W.J. Chung, W.B. Im, Phosphor in glass using β-SiAlON: Eu2+, CaAlSiN3: Eu2+ and Nd-doped silicate glass for enhanced color gamut of white LED. J. Alloy Compd. 851, 156945 (2021). https://doi.org/10.1016/j.jallcom.2020.156945

    Article  CAS  Google Scholar 

  5. S. Liu, X. Li, X. Yu et al., A route for white LED package using luminescent low-temperature co-fired ceramics. J. Alloy Compd. 655, 203–207 (2016). https://doi.org/10.1016/j.jallcom.2015.09.177

    Article  CAS  Google Scholar 

  6. Y. Peng, R. Li, H. Cheng et al., Facile preparation of patterned phosphor-in-glass with excellent luminous properties through screen-printing for high-power white light-emitting diodes. J. Alloy Compd. 693, 279–284 (2017). https://doi.org/10.1016/j.jallcom.2016.09.197

    Article  CAS  Google Scholar 

  7. X. Xu, H. Li, Y. Zhuo et al., High refractive index coating of phosphor-in-glass for enhanced light extraction efficiency of white LEDs. J. Mater. Sci. 53, 1335–1345 (2018). https://doi.org/10.1007/s10853-017-1571-y

    Article  CAS  Google Scholar 

  8. Y.H. Zhu, X. Liu, M. Ge, Y. Li, M.Y. Wang, Demonstration of GaN-based white LED grown on 4-inch patterned sapphire substrate by MOCVD. Opt. Mater. 112, 110811 (2021). https://doi.org/10.1016/j.optmat.2021.110811

    Article  CAS  Google Scholar 

  9. D. Chen, Y. Zhou, W. Xu et al., Persistent and photo-stimulated luminescence in Ce3+/Cr3+ activated Y3Al2Ga3O12 phosphors and transparent phosphor-in-glass. J. Mater. Chem. C 4(48), 11457–11464 (2016). https://doi.org/10.1039/C6TC04140J

    Article  CAS  Google Scholar 

  10. M.J. Pascual, C. Garrido, A. Duran et al., Optical properties of transparent glass-ceramics containing Er3+-doped sodium lutetium fluoride nanocrystals. Int. J. Appl. Glass Sci. 7(1), 27–40 (2016). https://doi.org/10.1111/ijag.12177

    Article  CAS  Google Scholar 

  11. S. Nishiura, S. Tanabe, Preparation and optical properties of Eu2+ and Sm3+ co-doped glass ceramic phosphors emitting white color by violet laser excitation. J. Ceram. Soc. Japan 116(1358), 1096–1099 (2008)

    Article  CAS  Google Scholar 

  12. D. Chen, W. Xiang, X. Liang et al., Advances in transparent glass–ceramic phosphors for white light-emitting diodes—a review. J. Eur. Ceram. Soc. 35(3), 859–869 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.10.002

    Article  CAS  Google Scholar 

  13. S. Nishiura, S. Tanabe, K. Fujioka et al., Preparation and optical properties of transparent Ce:YAG ceramics for high power white LED. IOP Conf. Ser. Mater. Sci. Eng. 1, 337–341 (2009). https://doi.org/10.1088/1757-8981/1/1/012031

    Article  CAS  Google Scholar 

  14. R. Zhang, H. Lin, Y. Yu et al., A new-generation color converter for high-power white LED: transparent Ce3+:YAG phosphor-in-glass. Laser Photon. Rev. 8(1), 158–164 (2014). https://doi.org/10.1002/lpor.201300140

    Article  CAS  Google Scholar 

  15. E.K. Ji, Y.H. Song, M.J. Lee et al., Thermally stable phosphor-in-glass for enhancement of characteristic in high power LED applications. Mater. Lett. 157, 89–92 (2015). https://doi.org/10.1016/j.matlet.2015.05.092

    Article  CAS  Google Scholar 

  16. S. Nishiura, S. Tanabe, K. Fujioka et al., Properties of transparent Ce:YAG ceramic phosphors for white LED. Opt. Mater. 33(5), 688–691 (2011). https://doi.org/10.1016/j.optmat.2010.06.005

    Article  CAS  Google Scholar 

  17. S. Fujita, A. Sakamoto, S. Tanabe, Luminescence characteristics of YAG glass-ceramic phosphor for white LED. IEEE J. Sel. Top. Quantum Electron. 14(5), 1387–1391 (2005). https://doi.org/10.1109/JSTQE.2008.920285

    Article  CAS  Google Scholar 

  18. T. Nakanishi, S. Tanabe, Novel Eu2+-activated glass ceramics precipitated with green and red phosphors for high-power white LED. IEEE J. Sel. Top. Quantum Electron. 15(4), 1171–1176 (2009). https://doi.org/10.1109/JSTQE.2009.2014396

    Article  CAS  Google Scholar 

  19. Y. Peng, S. Wang, R. Li et al., Luminous efficacy enhancement of ultraviolet-excited white light-emitting diodes through multilayered phosphor-in-glass. Appl. Opt. 55(18), 4933 (2016). https://doi.org/10.1364/AO.55.004933

    Article  CAS  Google Scholar 

  20. S. Wang, X. Chen, M. Chen et al., Improvement in angular color uniformity of white light-emitting diodes using screen-printed multilayer phosphor-in-glass. Appl. Opt. 53(36), 8492 (2014). https://doi.org/10.1364/ao.53.008492

    Article  Google Scholar 

  21. Y. Liang, S. Bao, Y. Zhang et al., A Unique Green-emitting Phosphor-in-Glass (PiG) for Solid State Laser Lighting and Displays. J. Mater. Chem. C (2021). https://doi.org/10.1039/D1TC02448E

    Article  Google Scholar 

  22. S.C. Allen, A.J. Steckl, A nearly ideal phosphor-converted white light-emitting diode. Appl. Phys. Lett. 92, 143309 (2008). https://doi.org/10.1063/1.2901378

    Article  CAS  Google Scholar 

  23. S. Cui, G. Chen, Y. Chen, X. Liu, Preparation and luminescent properties of new YAG:Ce3+ phosphor in glass (PIG) for white LED applications. J. Mater. Sci.: Mater. Electron. 29(15), 13019–13024 (2018). https://doi.org/10.1063/1.2901378

    Article  CAS  Google Scholar 

  24. F. Xu, H. Yang, Y. Zhang et al., β-Sialon:Eu2+ phosphor-in-glass: an efficient and potential green color conversion material for laser lighting systems. J. Alloy Compd. 887, 161301 (2021). https://doi.org/10.1016/j.jallcom.2021.161301

    Article  CAS  Google Scholar 

  25. Z. Jiangdan, Xu. Wang Liansheng, W.L. Fucai, Xu. Li, Z. Qiangqiang, L. Xiaojuan, X. Weidong, High-efficiency phosphor-in-glass with ultra-high color rendering indexing for white laser diode lighting. Ceram. Int. 48(2), 1682–1689 (2022). https://doi.org/10.1016/j.ceramint.2021.09.247

    Article  CAS  Google Scholar 

  26. G. Zhao, Xu. Lingzhi, Y. Guo, J. Hou, Y. Liu, Y. Zhou, J.-G. Li, Y. Fang, Chromaticity-tunable remote LuYAG: Ce phosphor-in-glass film on regular textured glass substrate for white light emitting diodes. J. Eur. Ceram. Soc. 41, 752–758 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.08.011

    Article  CAS  Google Scholar 

  27. Y. Zhuo, H. Li, X. Xu et al., Enhanced luminous efficiency of multilayer gradient refractive index phosphor in P2O5-ZnO-B2O3-BaO glass for white light-emitting diode packages. J. Non-Cryst. Solids 471, 215–221 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.05.042

    Article  CAS  Google Scholar 

  28. H. Li, P. Wang, Y. Zhuo et al., Mapping the glass forming region and making their phosphor-in-glass for application in W-LEDs packaging. J. Am. Ceram. Soc. 103(9), 5056–5066 (2020). https://doi.org/10.1111/jace.17278

    Article  CAS  Google Scholar 

  29. J.M. Hutchinson, Studying the glass transition by DSC and TMDSC. J. Therm. Anal. Calorim. 72(2), 619–629 (2003). https://doi.org/10.1023/A:1024542103314

    Article  CAS  Google Scholar 

  30. Y. Kim, S. Kim, F. Iqbal et al., Effect of transmittance on luminescence properties of phosphor-in-glass for LED packaging. Opt. Express 23(3), 43–50 (2015). https://doi.org/10.1364/oe.23.000a43

    Article  Google Scholar 

  31. A. Abd El-Moneim, DTA and IR absorption spectra of vanadium tellurite glasses. Mater. Chem. Phys. 73(2), 318–322 (2002). https://doi.org/10.1016/S0254-0584(01)00355-8

    Article  CAS  Google Scholar 

  32. F. Pietrucci, S. Caravati, M. Bernasconi, TeO2 glass properties from first principles. Phys. Rev. B 78, 064203 (2008). https://doi.org/10.1103/PhysRevB.78.064203

    Article  CAS  Google Scholar 

  33. K.I. Chatzipanagis, N.S. Tagiara, D. Möncke, S. Kundu, A.C.M. Rodrigues, E.I. Kamitsos, Vibrational study of lithium borotellurite glasses. J. Non-Cryst. Solids 540, 120011 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120011

    Article  CAS  Google Scholar 

  34. M.M. El-Zaidia, A.A. Ammar, R.A. El-Mallwany, Infra-red spectra, electron spin resonance spectra, and density of (TeO2)100–x-(WO3)x and (TeO2)100–x-(ZnCl2)x glasses. Phys. Status Solidi 91(2), 637–642 (2010). https://doi.org/10.1002/pssa.2210910234

    Article  Google Scholar 

  35. Q. Zhang, L. Wang, J. Luo et al., Improved energy storage density in barium strontium titanate by addition of BaO-SiO2-B2O3 glass. J. Am. Ceram. Soc. 92(8), 1871–1873 (2014). https://doi.org/10.1111/j.1551-2916.2009.03109.x

    Article  CAS  Google Scholar 

  36. C.C. Chiang, M.S. Tsai, M.H. Hon, Synthesis and photoluminescent properties of Ce3+ doped terbium aluminum garnet phosphors. J. Alloy Compd. 431, 298–302 (2007). https://doi.org/10.1016/j.jallcom.2006.05.068

    Article  CAS  Google Scholar 

  37. H. Wu, T. Lu, N. Wei et al., Photoluminescence enhancement of YAG: Ce nanophosphors with SiO2 additions. J. Mater. Sci.: Mater. Electron. 26(4), 2451–2456 (2015). https://doi.org/10.1007/s10854-015-2705-0

    Article  CAS  Google Scholar 

  38. H. Merenga, J. Andriessen, C. Eijk, Positions of 4f and 5d energy levels of Ce3+ in the band gap of CeF3, YAG and LSO. Radiat. Meas. 24(4), 343–346 (1995). https://doi.org/10.1016/1350-4487(94)00260-8

    Article  CAS  Google Scholar 

  39. H. Yang, Y.S. Kim, Energy transfer-based spectral properties of Tb-, Pr-, or Sm-Codoped YAG: Ce nanocrystalline phosphors. J. Lumin. 128(10), 1570–1576 (2008). https://doi.org/10.1016/j.jlumin.2008.03.003

    Article  CAS  Google Scholar 

  40. I. Nishida, K. Tatsumi et al., Local electronic and atomic structure of Ce3+-containing fluoride/oxide determined by TEM-EELS and first-principles calculations. Mater. Trans. 50(5), 952–958 (2009). https://doi.org/10.2320/matertrans.MC200828

    Article  CAS  Google Scholar 

  41. G.H. Liu, Z.Z. Zhou, Y. Shi et al., Ce:YAG transparent ceramics for applications of high power LEDs: Thickness effects and high temperature performance. Mater. Lett. 139, 480–482 (2015). https://doi.org/10.1016/j.matlet.2014.10.114

    Article  CAS  Google Scholar 

  42. X.H. Yan, S.S. Zheng, Y.U. Rui-Min et al., Preparation of YAG:Ce3+, phosphor by sol-gel low temperature combustion method and its luminescent properties. Chin. J. Nonferrous Met. 18(3), 648–653 (2008). https://doi.org/10.1016/S1003-6326(08)60113-2

    Article  CAS  Google Scholar 

  43. K.L. Kelly, Lines of constant correlated color temperature based on MacAdam’s (u, υ) uniform chromaticity transformation of the CIE diagram. J. Opt. Soc. Am. 53(8), 999–1002 (1963). https://doi.org/10.1364/JOSA.53.000999

    Article  Google Scholar 

  44. C.S. Mccamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color. Res. Appl. 17, 142–144 (1992). https://doi.org/10.1002/col.5080170211

    Article  Google Scholar 

  45. J. Seo, S. Kim, Y. Kim et al., Effect of glass refractive index on light extraction efficiency of light-emitting diodes. J. Am. Ceram. Soc. 97(9), 2789–2793 (2014). https://doi.org/10.1111/jace.13040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere thanks for the financial supports by the National Natural Science Foundation of China (51772224, 51372179), Innovation and Entrepreneurship Training Program of School of Materials Science and Engineering, Wuhan University of Technology (15).

Funding

This work was supported by the National Natural Science Foundation of China (51772224, 51372179).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The conception of the study was contributed by HL. The experiment was carried out by JY and HL. Material preparation and data collection were performed by PW and JL. The data analysis and the first draft of the manuscript were completed by YZ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hong Li.

Ethics declarations

Conflict of interest

We wish to draw the attention of the Editor to the following facts which may be: considered as potential conflicts of interest and to significant financial contributions to this work. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us. We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property. We understand that the Corresponding Author is the sole contact for the Editorial process (including Editorial Manager and direct communications with the office). I am responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs. We confirm that we have provided a current, correct email address which is accessible by the Corresponding Author and which has been configured to accept email from Journal of Materials Science: Materials in Electronics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yang, J., Zhuo, Y. et al. Low-temperature sintering coating of phosphor in TeO2–SiO2–B2O3–ZnO glass for enhanced luminous efficacy of white LED. J Mater Sci: Mater Electron 33, 11915–11925 (2022). https://doi.org/10.1007/s10854-022-08154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08154-4

Navigation