Skip to main content

Advertisement

Log in

The CeF4-coated spinel LiNi0.5Mn1.5O4 with improved electrochemical performance for 5 V lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The LiNi0.5Mn1.5O4 (LNMO) is an ideal cathode material of lithium-ion battery due to its high operating voltage. However, the corrosion of the electrolyte at high voltage is also a key issue for the LNMO cathode. In current work, the CeF4 were used to coat LNMO pristine via a simple calcining synthesis process. The microstructure and morphology of the pristine and CeF4-coated samples were studied by XRD, FTIR, XPS SEM, and TEM. The microstructure and morphology analysis show that CeF4 successfully coats on the surface of LNMO and forms a uniform coating layer. The CeF4 layers have little effect on the crystal structure of the LNMO and surface characters keep stable. The electrochemical performance study revealed that the CeF4-coated samples owned higher rate capacity and galvanostatic change–discharge capacity at 5C because the CeF4 layer was benefit to Li+ diffusion that decrease the polarization resistance. Moreover, the CeF4-3 has best cycling performance and rate capacity among all samples. After 100 charge–discharge cycles, the specific discharge capacity of CeF4-3 is still maintained 120 mAh/g with 97.6% capacity retention, while the pristine LNMO is only 97 mAh/g with 94.0% capacity retention. Therefore, CeF4 can be regarded as a promising anode modification material to improve the electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)

    Article  CAS  Google Scholar 

  2. S. Vazquez, S.M. Lukic, E. Galvan, L.G. Franquelo, J.M. Carrasco, Energy storage systems for transport and grid applications. IEEE Trans. Ind. Electron. 57(12), 3881–3895 (2010)

    Article  Google Scholar 

  3. S. Patoux, L. Sannier, H. Lignier, Y. Reynier, C. Bourbon, S. Jouanneau, F. Le Cras, S. Martinet, High voltage nickel manganese spinel oxides for Li-ion batteries. Electrochim. Acta 53, 4137–4145 (2008)

    Article  CAS  Google Scholar 

  4. X. Zhang, F. Cheng, J. Yang, J. Chen, LiNi0.5Mn1.5O4 porous nanorods as high-rateand long-life cathodes for Li-Ion batteries. Nano Lett. 13, 2822–2825 (2013)

    Article  CAS  Google Scholar 

  5. X. Fang, Y. Lu, N. Ding, X.Y. Feng, C. Liu, C.H. Chen, Electrochemical properties of nano- and micro-sized LiNi0.5Mn1.5O4 synthesized via thermal decomposition of a ternary eutectic Li–Ni–Mnacetate. Electrochim. Acta 55, 832–837 (2010)

    Article  CAS  Google Scholar 

  6. S. Buchberger, A. Seidlmayer, M. Pokharel, J. Piana, P. Hattendorff, R. Kudejova, H.A. Gilles, Gasteiger, Aging analysis of graphite/LiNi1/3Mn1/3Co1/3O2 cells using XRD, PGAA, and AC impedance. J. Electrochem. Soc. 162, A2737–A2746 (2015)

    Article  CAS  Google Scholar 

  7. D.S. Lu, L.B. Yuan, J.L. Li, R.Q. Huang, J.H. Guo, Y.P. Cai, Failure mechanism for high voltage graphite/LiNi0.5Mn1.5O4 (LNMO) Li-ion cells stored at elevated temperature. J. Electroanal. Chem. 758, 33–38 (2015)

    Article  CAS  Google Scholar 

  8. N.P.W. Pieczonka, Z. Liu, P. Lu, K.L. Olson, J. Moote, B.R. Powell, J.-H. Kim, Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J. Phys. Chem. C 117, 15947–15957 (2013)

    Article  CAS  Google Scholar 

  9. N.P.W. Pieczonka, L. Yang, M.P. Balogh, B.R. Powell, K. Chemelewski, A. Manthiram, S.A. Krachkovskiy, G.R. Goward, M. Liu, J.-H. Kim, Impact of lithium bis(oxalate)borate electrolyte additive on the performance of high-voltage spinel/graphite Li-ion batteries. J. Phys. Chem. C 117, 22603–22612 (2013)

    Article  CAS  Google Scholar 

  10. D. Zhao, S. Song, X. Ye, P. Wang, J. Wang, Y. Wei, C. Li, L. Mao, H. Zhang, S. Li, New insight into the mechanism of LiPO2F2 on the interface of high-voltage cathode LiNi0.5Mn1.5O4 with truncated octahedral structure. Appl. Surf. Sci. 491, 595–606 (2019)

    Article  CAS  Google Scholar 

  11. S. Feng, X. Kong, H. Sun, B. Wang, T. Luo, G. Liu, Effect of Zr doping on LiNi0.5Mn1.5O4 with ordered or disordered structures. J. Alloys Compd. 749, 1009–1018 (2018)

    Article  CAS  Google Scholar 

  12. M.-C. Kim, Y.-W. Lee, T.K. Pham, J.I. Sohn, K.-W. Park, Chemical valence electron engineered LiNi0.4Mn1.5MtO4 (Mt = Co and Fe) cathode materials with high-performance electrochemical properties. Appl. Surf. Sci. 504, 144514 (2020)

    Article  CAS  Google Scholar 

  13. S.Y. Li, Y. Wei, P. Wang, Y.H. Feng, W.B. Liang, H. Ding, X.L. Cui, Synergism of Cu and Al co-doping on improvements of structural integrity and electrochemical performance for LiNi0.5Mn1.5O4. J. Alloy. Compd. 820, 153140 (2020)

    Article  CAS  Google Scholar 

  14. Y. Huang, X. Liu, R. Yu, S. Cao, Y. Pei, Z. Luo, Q. Zhao, B. Chang, Y. Wang, X. Wang, Tellurium surface doping to enhance the structural stability and electrochemical performance of layered Ni-rich cathodes. ACS Appl. Mater. Interfaces. 11, 40022–40033 (2019)

    Article  CAS  Google Scholar 

  15. X. Zheng, W. Liu, Q. Qu, Q. Shi, H. Zheng, Y. Huang, Effectively stabilizing 5 V spinel LiNi0.5Mn1.5O4 cathode in organic electrolyte by polyvinylidene fluoride coating. Appl. Surf. Sci. 455, 349–356 (2018)

    Article  CAS  Google Scholar 

  16. F. Ma et al., Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via wet-chemical coating of MgO. J. Solid State Electrochem. 23, 2213–2224 (2019)

    Article  CAS  Google Scholar 

  17. H. Yin et al., Towards high-performance cathode materials for lithium-ion batteries: Al2O3-coated LiNi0.8Co0.15Zn0.05O2. J. Solid State Electrochem. 22(8), 2395–2403 (2018)

    Article  CAS  Google Scholar 

  18. C. Chen et al., High-performance lithium ion batteries using SiO2-coated LiNi0.5Co0.2Mn0.3O2 microspheres as cathodes. J. Alloy. Compd. 709, 708–716 (2017)

    Article  CAS  Google Scholar 

  19. S. Tao et al., Nanoscale TiO2 membrane coating spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries. J. Alloy. Compd. 705, 413–419 (2017)

    Article  CAS  Google Scholar 

  20. J. Ahn et al., Ultrathin ZrO2 on LiNi0.5Mn0.3Co0.2O2 electrode surface via atomic layer deposition for high-voltage operation in lithium-ion batteries. Appl. Surf. Sci. 484, 701–709 (2019)

    Article  CAS  Google Scholar 

  21. Q. Li et al., ZnO-coated LiMn2O4 cathode material for lithium-ion batteries synthesized by a combustion method. Ionics 22, 1343–1351 (2016)

    Article  CAS  Google Scholar 

  22. Y. Bai, K. Jiang, S.W. Sun, Q. Wu, Performance improvement of LiCoO2 by MgF2 surface modification and mechanism exploration. Electrochim. Acta 134, 347 (2014)

    Article  CAS  Google Scholar 

  23. J. Mu, L. Zhang, R. He, enhancing the electrochemical performance of LiMn1.5Ni0.5O4 cathode material by a conductive LaCoO3 coating. J. Alloy. Compd. 865, 158629 (2021)

    Article  CAS  Google Scholar 

  24. H. Jung, Y. Kim, K. Ryu, The effects of AlF3 modification of the surface of Li2FeP2O7/C cathode material for high electrochemical performance. J. Electroceram. 44(1), 78–86 (2020)

    Article  CAS  Google Scholar 

  25. P. Guan et al., Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. J. Energy Chem. 43, 220–235 (2020)

    Article  Google Scholar 

  26. K. Yang, L.Z. Fan, J. Guo, X.H. Qu, Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials. Electrochim. Acta 63, 363 (2012)

    Article  CAS  Google Scholar 

  27. Q. Wu, Y. Yin, S. Sun, Novel AlF3 surface modified spinel LiMn1.5Ni0.5O4 for lithium-ion batteries: performance characterization and mechanism exploration. Electrochim. Acta 158, 73–80 (2015)

    Article  CAS  Google Scholar 

  28. C.-T. Chua, A. Mondala, Improved high-temperature cyclability of AlF3 modified spinel LiNi0.5Mn1.5O4 cathode for lithium-ion batteries. Appl. Surf. Sci 530, 147169 (2020)

    Article  Google Scholar 

  29. D.F. Zhou, H.M. Wu, J.B. Guo, Ruthenium doped LiMn1.5Ni0.5O4 microspheres with enhanced electrochemical performance as lithium-ion battery cathode. J. Mater. Sci: Mater. Electron. 32, 23786–23797 (2021)

    CAS  Google Scholar 

  30. S. Khateeb, A. Lind, R. Santos-Ortiz, N. Shepherd, K. Jones, Effects of steel cell components on overall capacity of pulsed laser deposited FeF2 thin film lithium ion batteries. J. Electrochem. Soc. 162, A1667–A1674 (2015)

    Article  CAS  Google Scholar 

  31. L. Wang, H. Li, X. Huang, E. Baudrin, A comparative study of Fd-3m and P4332 “LiNi0.5Mn1.5O4.” Solid State Ion. 193, 32–38 (2011)

    Article  CAS  Google Scholar 

  32. H. Fang, L. Li, G. Li, A low-temperature reaction route to high rate and high capacity LiNi0.5Mn1.5O4. J. Power Sour. 167(1), 223–227 (2007)

    Article  CAS  Google Scholar 

  33. S. Jamil, G. Wang, L. Yang, X. Xie, S. Cao, Suppressing H2–H3 phase transition in high Ni - low Co layered oxide cathode material by dual modification. J. Mater. Chem. A 8, 20752–20780 (2020)

    Article  Google Scholar 

  34. S. Jamila, Q. Ranb, Y. Li, Improved high-voltage performance of LiNi0.87Co0.1Al0.03O2 by Li+- conductor coating. Chem. Eng. J. 407, 126442 (2021)

    Article  Google Scholar 

  35. Y. Huang, S. Cao, X. Xie, Improving the structure and cycling stability of Ni-rich layered cathodes by dual modification of yttrium doping and surface coating. ACS Appl. Mater. Interfaces. 12(17), 19483–19494 (2020)

    Article  CAS  Google Scholar 

  36. C-T. Chu, A. Mondal, N.V Kosova, Improved high-temperature cyclability of AlF3 modified spinel LiNi0.5Mn1.5O4 cathode for lithium-ion batteries. Applied Surface Science 147169 (2020)

  37. Y. Li, Q. Zhang, Y. Bai, LaF3 nanolayer surface modified spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium–ion batteries. Ceram. Int. 44, 4058–4065 (2018)

    Article  CAS  Google Scholar 

  38. X. Wang et al., A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim. Acta. 56(11), 4065–4069 (2011)

    Article  CAS  Google Scholar 

  39. K.C. Mahesh et al., Study of lithium ion intercalation/de-intercalation into LiNi1/3Mn1/3Co1/3O2 in aqueous solution using electrochemical impedance spectroscopy. J. Solid State Electrochem. 16(9), 3011–3025 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge financial support from Natural Science Foundation of China (52063005), Science and Technology Project of Guizhou (2016/5667) and (2021488), Science and Technology Foundation of Guizhou Province (2019/5635).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

TC: Conducting research and investigation process, Data curation, Writing—original draft, writing-reviewing and editing. HW: Experimental ideas and scheme design, provision of study materials, reagents and materials. DZ: Supervision. YZ: Supervision WY: Supervision JS: Supervision JG: Supervision, funding acquisition.

Corresponding authors

Correspondence to Hongming Wu, Jiling Song or Jianbing Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Wu, H., Zhou, D. et al. The CeF4-coated spinel LiNi0.5Mn1.5O4 with improved electrochemical performance for 5 V lithium-ion batteries. J Mater Sci: Mater Electron 33, 11712–11724 (2022). https://doi.org/10.1007/s10854-022-08137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08137-5

Navigation