Skip to main content
Log in

Structural, optical and electronic characteristics of Cu and Mg-doped nano MnS sample prepared by molten salt solid state reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nano Mn0.95M0.05S (M ≡ Cu, Mg) samples were produced using molten salt solid state reaction method. Rietveld analysis of X-ray diffraction data was applied to investigate the percentage of phases developed and their structural parameters in the obtained samples. Analysis evidenced the incorporation of Cu and Mg into the MnS lattice. Diffraction patterns of pristine and Mg-doped samples exhibited biphasic MnS structure of hexagonal γ-MnS (wurtzite) and cubic β-MnS (zincblende) phases, while the Cu-doped sample exhibited only cubic phase for MnS; both doped samples contained a minor Mn3O4 phase. The selected area electron diffraction confirmed the formed phases in the prepared samples. The characteristic vibrational bands in each sample were investigated using Fourier transform infrared technique. The direct optical band gap of MnS, Cu or Mg-doped MnS are (3.04, 3.17), (3.52, 3.88) and (3.5, 3.91) eV respectively. The effect of doping on full width at half maximum, intensity and emitted colors of the photoluminescence spectra was studied. The effect of doping on the absorbance, refractive index, extinction coefficient, static dielectric constant and electric properties of MnS (hexagonal wurtzite structure) was explored using the density functional calculation. The emitted colors from doped nano MnS especially with Cu could be effectively used in LEDs applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. D.K. Sonavane, S.K. Jare, M.A. Shaikh, R.V. Suryawanshi, R.V. Kathare, R.N. Bulakhe, Macromol. Symp. 387, 1800211 (2019)

    Article  CAS  Google Scholar 

  2. D. Fan, H. Wang, Y. Zhang, J. Cheng, B. Wang, H. Yan, Mater. Chem. Phys. 80, 44 (2003)

    Article  CAS  Google Scholar 

  3. Z.K. Heiba, M.B. Mohamed, A. Badawi, N.M. Farag, Chem. Phys. Lett. 779, 138877 (2021)

    Article  CAS  Google Scholar 

  4. Z.K. Heiba, M.B. Mohamed, N.M. Farag, S.I. Ahmed, Appl. Phys. A 127(4), 1 (2021)

    Article  CAS  Google Scholar 

  5. D. Chen, H. Quan, G. Wang, L. Guo, ChemPlusChem 78, 843 (2013)

    Article  CAS  Google Scholar 

  6. J. Huarac, O. Resto, J. Nuñez, W. Jadwisienczak, L. Fonseca, B. Weiner, G. Morell, Appl. Mater. Interface. 6, 1180 (2014)

    Article  CAS  Google Scholar 

  7. Y. Zhang, H. Wang, B. Wang, H. Yan, M. Yoshimura, J. Cryst. Growth 243, 214 (2002)

    Article  CAS  Google Scholar 

  8. Z.K. Heiba, M.B. Mohamed, Appl. Phys. A 124(6), 1 (2018)

    Article  CAS  Google Scholar 

  9. Z.K. Heiba, M.B. Mohamed, N.M. Farag, A.M. El-naggar, A.A. Albassam, J. Mater. Sci. Mater. Electron. 31(15), 12696 (2020)

    Article  CAS  Google Scholar 

  10. T. Munir, N. Rehman, A. Mahmood, K. Mahmood, A. Ali, I. Khan, A. Sohail, A. Manzoor, Chem. Phys. Lett. 761, 137989 (2020)

    Article  CAS  Google Scholar 

  11. D.S. Kim, J.Y. Lee, C.W. Na, S.W. Yoon, S.Y. Kim, J. Park, J. Phys. Chem. B 110, 18262 (2006)

    Article  CAS  Google Scholar 

  12. M.M. Hosseini-Hajivar, F. Jamali-Sheini, R. Yousefi, Solid State Sci. 93, 31 (2019)

    Article  CAS  Google Scholar 

  13. C. Prathap, A.S. Roy, R. Sagar, Cogent Chem. 2, 1269599 (2016)

    Article  CAS  Google Scholar 

  14. T.V. Kandasamy, K. Rajendran, K. Sambath, P. Rameshbabu, Mater. Chem. Phys. 171, 328 (2016)

    Article  CAS  Google Scholar 

  15. S. Kokilavani, A. Syed, M.R. Rajeshwari, V. Subhiksha, A.M. Elgorban, A.H. Bahkali, N.S.S. Zaghloul, A. Das, S.S. Khan, J. Alloys Compd. 889, 161662 (2021)

    Article  CAS  Google Scholar 

  16. J. Jiang, R. Yu, J. Zhu, R. Yi, G. Qiu, Y. He, X. Liu, Mater. Chem. Phys. 115, 502 (2009)

    Article  CAS  Google Scholar 

  17. S. Wang, K. Li, R. Zhai, H. Wang, Y. Hou, H. Yan, Mater. Chem. Phys. 91, 298 (2005)

    Article  CAS  Google Scholar 

  18. L. Lutterotti, Phys. Res. B. 268, 334 (2010)

    CAS  Google Scholar 

  19. J. Rodríguez-Carvajal, Physica B 192, 55 (1993)

    Article  Google Scholar 

  20. M. Mohammadikish, F. Davar, M.R. Loghman-Estarki, Z. Hamidi, Ceram. Int. 39, 3173 (2013)

    Article  CAS  Google Scholar 

  21. M. Mohammadikish, F. Davar, M.R. Loghman-Estarki, J. Cluster Sci. 24, 217 (2013)

    Article  CAS  Google Scholar 

  22. F. Davar, M. Mohammadikish, M.R. Loghman-Estarki, M. Masteri-Farahani, Ceram. Int. 40, 8143 (2014)

    Article  CAS  Google Scholar 

  23. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett 77, 3865 (1996)

    Article  CAS  Google Scholar 

  24. Z.K. Heiba, M.B. Mohamed, N.M. Farag, A. Badawi, J. Mater. Sci. Mater. Electron. 32(7), 9517 (2021)

    Article  CAS  Google Scholar 

  25. Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Alloy. Compd. 618, 280 (2015)

    Article  CAS  Google Scholar 

  26. Z.K. Heiba, N.G. Imam, M.B. Mohamed, Mater. Sci. Semicond. Process. 34, 39 (2015)

    Article  CAS  Google Scholar 

  27. J.D. Liu, X.S. Zheng, Z.F. Shi, S.Q. Zhang, Ionics 20, 659 (2014)

    Article  CAS  Google Scholar 

  28. J. Meng, Y. Zhao, Z. Li, L. Wang, Y. Tian, RSC Adv. 6, 6878 (2016)

    Article  CAS  Google Scholar 

  29. T. Dhandayuthapani, M. Girish, R. Sivakumar, C. Sanjeeviraja, R. Gopalakrishnan, Appl. Surf. Sci. 353, 449 (2015)

    Article  CAS  Google Scholar 

  30. T.P. Nguyena, Q.V. Lamb, T.B. Vu, J. Lumin. 196, 359 (2018)

    Article  CAS  Google Scholar 

  31. Hu. Yun, Hu. Bin, Wu. Bo, Z. Wei, J. Li, J. Mater. Sci. 29, 16715–16720 (2018)

    Google Scholar 

  32. T. Veeramanikandasamy, K. Rajendran, K. Sambath, P. Rameshbabu, Mater. Chem. Phys. 171, 328 (2016)

    Article  CAS  Google Scholar 

  33. Y. Yucel, B. Beleli, Mater. Res. Express. 5, 056408 (2018)

    Article  CAS  Google Scholar 

  34. M.B. Mohamed, M.H. Abdel-Kader, J.Q.M. Almarashi, Int. J. Appl. Ceram. Technol. 17(2), 832 (2020)

    Article  CAS  Google Scholar 

  35. M. Muthusamy, S. Muthukumaran, Optik 126(24), 5200 (2015)

    Article  CAS  Google Scholar 

  36. J. Wang, Y.-F. Lim, G.W. Ho, Chem. Eur. J. 9(21), 4148 (2017)

    CAS  Google Scholar 

  37. M.M.H. Hajivar, F.J. Sheini, R. Yousefi, Solid State Sci. 93, 31 (2019)

    Article  CAS  Google Scholar 

  38. Z.K. Heiba, S.I. Ahmed, M.B. Mohamed, Appl. Phys. A 127, 91 (2021)

    Article  CAS  Google Scholar 

  39. V. Krishnakumar, R. Ranjith, J. Jayaprakash, S. Boobas, J. Venkatesan, Mater Sci. Mater. Electron. 28(18), 13990 (2017)

    Article  CAS  Google Scholar 

  40. M.J.I. Khan, M.N. Usmani, Z. Kanwal, P. Akhtar, Optik 156, 817 (2018)

    Article  CAS  Google Scholar 

  41. Z.K. Heiba, M.B. Mohamed, A. Badawi, Appl. Phys. A 127(3), 1 (2021)

    Google Scholar 

  42. M. Roknuzzaman, C. Zhang, K. Ostrikov, A. Du, H. Wang, L. Wang, T. Tesfamichael, Sci. Rep. 9, 718 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors thank the support of Taif University Researchers Supporting Project number (TURSP-2020/12), Taif University, Taif, Saudi Arabia.

Funding

This study was funded by Taif University [Grant No.: Taif University Researchers Supporting Project Number (TURSP-2020/12), Taif University, Taif, Saudi Arabia]

Author information

Authors and Affiliations

Authors

Contributions

ZKH: Supervision, Methodology, Writing—review and editing. MBM: Data collection, software, Writing—review and editing. NMF: Data collection. AB: Data curation, review and editing, funding.

Corresponding authors

Correspondence to Zein K. Heiba or Ali Badawi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiba, Z.K., Mohamed, M.B., Farag, N.M. et al. Structural, optical and electronic characteristics of Cu and Mg-doped nano MnS sample prepared by molten salt solid state reaction. J Mater Sci: Mater Electron 33, 10388–10398 (2022). https://doi.org/10.1007/s10854-022-08026-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08026-x

Navigation