Skip to main content
Log in

Liquid-phase exfoliation of WSe2 nanosheets for ITO/WSe2 photodetector

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The potential application of atomically thin two-dimensional (2D)-layered WSe2 in future wearable electronics has sparked a lot of interest. Herein, we report the highly crystalline nature of WSe2 nanosheets was synthesized by the liquid-phase exfoliation technique and its application as a broadband photodetector. The direct vapor transport (DVT) technique has been used in the synthesis of bulk WSe2 compounds. The chemical composition and purity of the grown compound were investigated by EDAX (Energy-dispersive analysis of X-ray). The structural phase analysis and the crystalline orientation were examined by X-ray diffraction technique (XRD), Scanning electron microscopy (SEM), and High-resolution transmission electron microscopy (HR-TEM) of the synthesized WSe2 compound. The Raman spectrum depicts the resonances corresponding to the E2g mode of vibration of WSe2 nanosheets. Additionally, a broadband photodetector based on WSe2 nanosheets was constructed and evaluated under wavelength-dependent illumination sources with a power level of 40 mW/cm2 on a 1.0 bias voltage. The ITO/WSe2 nanosheet device was studied under the function of various power intensities and various external bias voltages. The device is tested for bias between 0 and 30 V and its responsiveness is improved. Furthermore, the device demonstrated higher stability under 40 mW/cm2 intensity. The results showed that WSe2 nanosheets have good optoelectronic capabilities and can be used in future optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

source illumination with 40 mw/cm2 power intensity, b pulse photoresponse of a device under pink (polychromatic) source illumination as a function of various power intensities, and c pulse photoresponse of device under pink (polychromatic) source illumination as a function of various external bias voltages. d Stability curve at 1.0 V and 40 mW/cm2 power intensity

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. P.K. Kashyap, A. Kumar, R. Srivastava, S. Gupta, B.K. Gupta, ChemNanoMat 7, 328 (2021)

    Article  CAS  Google Scholar 

  2. S.U. Gupta, A.G. Dalvaniya, N.F. Patel, S.A. Bhakhar, S. Nair, J. Joy, K.D. Patel, G.K. Solanki, V.M. Pathak, N.N. Som, P.K. Jha, D.K. Panda, A.C.S. Appl, Electron. Mater. 3, 4859 (2021)

    CAS  Google Scholar 

  3. F. Xia, H. Wang, Y. Jia, Nat. Commun. 5, 1 (2014)

    Google Scholar 

  4. J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, B.J. Leroy, Nat. Mater. 10, 282 (2011)

    Article  CAS  Google Scholar 

  5. N. Alem, R. Erni, C. Kisielowski, M.D. Rossell, W. Gannett, A. Zettl, Phys. Rev. B Condens. Matter Mater. Phys. 80, 1 (2009)

    Article  Google Scholar 

  6. M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H. Zhang, Nat. Chem. 5, 263 (2013)

    Article  Google Scholar 

  7. A.M. Jones, H. Yu, J.S. Ross, P. Klement, N.J. Ghimire, J. Yan, D.G. Mandrus, W. Yao, X. Xu, Nat. Phys. 10, 130 (2014)

    Article  CAS  Google Scholar 

  8. P. Pataniya, G.K. Solanki, C.K. Zankat, M. Tannarana, C.K. Sumesh, K.D. Patel, V.M. Pathak, Pramana - J. Phys. 91, 1 (2018)

    Article  CAS  Google Scholar 

  9. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 2 (2010)

    Article  Google Scholar 

  10. L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, N. Grigorenko, A.K. Geim, C. Casiraghi, H.C. Neto, K.S. Novoselov, Science 340, 1311 (2013)

    Article  CAS  Google Scholar 

  11. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010)

    Article  CAS  Google Scholar 

  12. C. Berthier, Y. Chabre, M. Minier, Solid State Commun. 28, 327 (1978)

    Article  CAS  Google Scholar 

  13. J. Dai, M. Li, X.C. Zeng, Wiley Interdiscip. Rev. Comput. Mol. Sci. 6, 211 (2016)

    Article  CAS  Google Scholar 

  14. A. Patel, C. Limberkar, K. Patel, S. Bhakhar, K.D. Patel, G.K. Solanki, V.M. Pathak, Sens. Actuators A Phys. 331, 112969 (2021)

    Article  CAS  Google Scholar 

  15. K.Z. Du, X.Z. Wang, Y. Liu, P. Hu, M.I.B. Utama, C.K. Gan, Q. Xiong, C. Kloc, ACS Nano 10, 1738 (2016)

    Article  CAS  Google Scholar 

  16. S. Das, J.A. Robinson, M. Dubey, H. Terrones, M. Terrones, Annu. Rev. Mater. Res. 45, 1 (2015)

    Article  CAS  Google Scholar 

  17. S.J. An, Y.H. Kim, C. Lee, D.Y. Park, M.S. Jeong, Sci. Rep. 8, 1 (2018)

    Google Scholar 

  18. Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, P.M. Ajayan, Nano Lett. 15, 6135 (2015)

    Article  CAS  Google Scholar 

  19. Q.D. Truong, M. Kempaiah Devaraju, Y. Nakayasu, N. Tamura, Y. Sasaki, T. Tomai, I. Honma, ACS Omega 2, 2360 (2017)

    Article  CAS  Google Scholar 

  20. H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, H. Zhang, Small 9, 1974 (2013)

    Article  CAS  Google Scholar 

  21. X. Yu, M.S. Prévot, N. Guijarro, K. Sivula, Nat. Commun. 6, 1 (2015)

    Google Scholar 

  22. H. Yuan, X. Liu, L. Ma, P. Gong, Z. Yang, H. Wang, J. Wang, S. Yang, RSC Adv. 6, 82763 (2016)

    Article  CAS  Google Scholar 

  23. R.C. RuiZhang, Daniel Drysdale, Vasileios kaoutsos. Adv. Funct. Mater. 27, 1702455 (2017)

    Article  Google Scholar 

  24. A. Kuc, Chem. Model. 11, 1 (2015)

    Google Scholar 

  25. P. Pataniya, G.K. Solanki, C.K. Zankat, M. Tannarana, K.D. Patel, V.M. Pathak, J. Mater. Sci. Mater. Electron. 30, 3137 (2019)

    Article  CAS  Google Scholar 

  26. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)

    Article  CAS  Google Scholar 

  27. L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, Q. Wang, J. Am. Chem. Soc. 135, 1213 (2013)

    Article  CAS  Google Scholar 

  28. A. Patel, P. Pataniya, S. Narayan, C.K. Sumesh, V.M. Pathak, G.K. Solanki, K.D. Patel, P.K. Jha, Mater. Sci. Semicond. Process. 81, 108 (2018)

    Article  CAS  Google Scholar 

  29. P.M. Pataniya, V. Patel, C.K. Sumesh, Nanotechnology 32, 1 (2021)

    Google Scholar 

  30. S.A. Bhakhar, P.M. Pataniya, M. Tannarana, G.K. Solanki, V.M. Pathak, Opt. Mater. 125, 112097 (2022)

    Article  Google Scholar 

  31. M. Patel, P.M. Pataniya, D.J. Late, C.K. Sumesh, Appl. Surf. Sci. 538, 148121 (2021)

    Article  CAS  Google Scholar 

  32. D.L. Duong, S.J. Yun, Y.H. Lee, ACS Nano 11, 11803 (2017)

    Article  CAS  Google Scholar 

  33. R.P. Patel, P.M. Pataniya, M. Patel, C.K. Sumesh, Nanotechnology 32, 5205202 (2021)

    Article  Google Scholar 

  34. X.F. Zhang, M. Kobayashi, Mater. Sci. 4, 1 (2017)

    Google Scholar 

  35. P. Pataniya, C.K. Zankat, M. Tannarana, C.K. Sumesh, S. Narayan, G.K. Solanki, K.D. Patel, V.M. Pathak, P.K. Jha, A.C.S. Appl, Nano Mater. 2, 2758 (2019)

    CAS  Google Scholar 

  36. P.M. Pataniya, C.K. Sumesh, ACS Appl. Energy Mater. 4(5), 4815 (2021)

    CAS  Google Scholar 

  37. P.M. Pataniya, C.K. Sumesh, Synth. Met. 265, 116400 (2020)

    Article  CAS  Google Scholar 

  38. S.U. Gupta, A.G. Dalvaniya, C. Limberkar, K.D. Patel, G.K. Solanki, V.M. Pathak, P.M. Pataniya, C.K. Sumesh, N.N. Som, P.K. Jha, V. Patel, J. Non. Cryst. Solids 578, 121353 (2022)

    Article  CAS  Google Scholar 

  39. L. Tao, Z. Chen, Z. Li, J. Wang, X. Xu, J. Xu, InfoMat 3, 36 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Badal Chauhan would like to express their gratitude to the University Grants Commission of India (UGC) for providing a National fellowship under the OBC scheme. (NFO-2018-19- OBC-GUJ-71826).

Author information

Authors and Affiliations

Authors

Contributions

BLC participated in the conceptualization, material preparation, data collection, investigation, analysis, and writing of the original draft. SAB participated in the investigation, data analysis, and methodology. SUG participated in the investigation and methodology. PMP participated in the data analysis and writing, reviewing, and editing of the manuscript. GKS acquired resources and assisted in project administration, writing, reviewing, and editing of the manuscript, and supervision. VMP assisted in project administration. VP acquired resources.

Corresponding authors

Correspondence to Badal L. Chauhan or G. K. Solanki.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, B.L., Bhakhar, S.A., Pataniya, P.M. et al. Liquid-phase exfoliation of WSe2 nanosheets for ITO/WSe2 photodetector. J Mater Sci: Mater Electron 33, 10314–10322 (2022). https://doi.org/10.1007/s10854-022-08019-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08019-w

Navigation