Skip to main content
Log in

Enhanced electrical properties of 0.7BiFeO3–0.3BaTiO3 lead-free ceramics obtained by optimizing the calcination temperature and time

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

0.7BiFeO3–0.3BaTiO3 ceramics were synthesized through the solid-state reaction method under different calcination temperatures (Tcal) and calcination times (td) to investigate their effects on the microstructure and electrical properties of the ceramics. The grains and phase structure change upon increasing Tcal or td. However, too high values of Tcal or td result in the volatilization of Bi2O3, which deteriorates the electrical properties of the ceramics. For Tcal = 800 °C and td = 2 h, a morphotropic phase boundary with mixed rhombohedral and pseudo-cubic phases appears, and the lowest leakage density and the maximum grain size are obtained, which leads to an improvement in the electrical properties (Pr = 26.7 µC/cm2, EC = 28.5 kV/cm, \({d}_{33}^{*}\) = 237 pm/V, and TC = 419 °C). This study indicates that Tcal and td influence considerably the electrical properties of the 0.7BiFeO3–0.3BaTiO3 ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. T. Zheng, J.G. Wu, D.Q. Xiao, J.G. Zhu, Recent development in lead-free perovskite piezozlectric bulk materials. Prog. Mater Sci. 98, 552–624 (2018)

    Article  CAS  Google Scholar 

  2. D.W. Wang, G. Wang, S. Murakami, Z.M. Fan, A. Feteira, D. Zhou, S. Sun, Q. Zhao, I.M. Reaney, BiFeO3–BaTiO3: a new generation of lead-free electroceramics. J. Adv. Dielectr. 8(6), 1830004 (2018)

    Article  CAS  Google Scholar 

  3. D. Wang, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, I.M. Reaney, Temperature dependent, large electromechanical strain in Nd-doped BiFeO3–BaTiO3 lead-freemceramics. J. Eur. Ceram. Soc. 37(4), 1857–1860 (2017)

    Article  Google Scholar 

  4. C.R. Zhou, H.B. Yang, Q. Zhou, Z.Y. Cen, W.Z. Li, C.L. Yuan, H. Wang, Dielectric, ferroelectric and piezoelectric properties of La-substituted BiFeO3–BaTiO3 ceramics. Ceram. Int. 39(4), 4307–4311 (2013)

    Article  CAS  Google Scholar 

  5. S.O. Leontsev, R.E. Eitel, Dielectric and piezoelectric properties in Mn-modified (1–x)BiFeO3–xBaTiO3 ceramics. J. Am. Ceram. Soc. 92(12), 2957–2961 (2009)

    Article  CAS  Google Scholar 

  6. S. Sahoo, S. Hajra, M. De, Processing, dielectric and impedance spectroscopy of lead free BaTiO3–BiFeO3–CaSnO3. J. Alloy. Compd. 766, 25–32 (2018)

    Article  CAS  Google Scholar 

  7. T. Zheng, J. Wu, Quenched bismuth ferrite-barium titanate lead-free piezoelectric ceramics. J. Alloy. Compd. 676, 505–512 (2016)

    Article  CAS  Google Scholar 

  8. B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, G. Shirane, Tetragonal-tomonoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys. Rev. B 61(13), 8687–8695 (2000)

    Article  CAS  Google Scholar 

  9. D. Wang, G. Wang, S. Murakami, Z. Fan, A. Feteira, D. Zhou, S. Sun, Q. Zhao, I.M. Reaney, BiFeO3–BaTiO3: a new generation of lead-free electroceramics. J. Adv. Dieletr. 08(06), 1830004 (2018)

    Article  CAS  Google Scholar 

  10. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21(24), 2463–2485 (2009)

    Article  CAS  Google Scholar 

  11. T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J.L. Jones, J.E. Daniels, D. Damjanovic, BiFeO3 ceramics: processing, electrical, and electromechanical properties. J. Am. Ceram. Soc. 97(7), 1993–2011 (2014)

    Article  CAS  Google Scholar 

  12. D.W. Wang, M.L. Wang, F.B. Liu, Q.L. Zhao, H.J. Sun, H.B. Jin, M.S. Cao, Sol–gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization. Ceram. Int. 41(7), 8768–8772 (2015)

    Article  CAS  Google Scholar 

  13. S. Hajra, S. Sahoo, T. Mishra, Studies of dielectric and electrical transport characteristics of BaTiO3BiFeO3–CaSnO3 ternary system. Process. Appl. Ceram. 12(2), 165–171 (2018)

    Article  Google Scholar 

  14. H.L. Zhang, W. Jo, K. Wang, K.G. Webber, Compositional dependence of dielectric and ferroelectric properties in BiFeO3–BaTiO3 solid solutions. Ceram. Int. 40, 4759–4765 (2014)

    Article  CAS  Google Scholar 

  15. Y.X. Wei, X.T. Wang, J.T. Zhu, X.L. Wang, J.J. Jia, Dielectric, ferroelectric, and piezoelectric properties of BiFeO3–BaTiO3 ceramics. J. Am. Ceram. Soc. 96(10), 3163–3168 (2013)

    Article  CAS  Google Scholar 

  16. S. Chandarak, M. Unruan, T. Sareein, A. Ngamjarurojana, S. Maensiri, P. Laoratanakul, S. Ananta, R. Yimnirun, Fabrication and characterization of (1–x)BiFeO3–xBaTiO3 ceramics prepared by a solid state reaction method. J. Magn. 14(3), 120–123 (2009)

    Article  Google Scholar 

  17. L.F. Zhu, B.P. Zhang, Z.C. Zhang, S. Li, L.J. Wang, L.J. Zheng, Piezoelectric, ferroelectric and ferromagnetic properties of (1–x)BiFeO3–xBaTiO3 lead-free ceramics near morphotropic phase boundary. J. Mater. Sci. Mater. Electron. 29, 2307–2315 (2018)

    Article  CAS  Google Scholar 

  18. H.B. Yang, C.R. Zhou, X.Y. Liu, Q. Zhou, G.H. Chen, H. Wang, W.Z. Li, Structure, microstructural and electrical properties of BiFeO3–BaTiO3 ceramics with high thermal stability. Mater. Res. Bull. 47, 4233–4239 (2012)

    Article  CAS  Google Scholar 

  19. M.H. Lee, D.J. Kim, H.I. Choi, M.H. Kim, T.K. Song, W.J. Kim, J.S. Park, D. Do, Low sintering temperature for lead-free BiFeO3–BaTiO3 ceramics with high piezoelectric performance. J. Am. Ceram. Soc. 102, 2666–2674 (2019)

    CAS  Google Scholar 

  20. S. Sharma, V. Singh, A. Anshul, J.M. Siqueiros, R.K. Dwivedi, Structural stability, enhanced magnetic, piezoelectric, and transport properties in (1–x)BiFeO3–(x)Ba0.70Sr0.30TiO3 nanoparticles. J. Appl. Phys. 123(20), 204102 (2018)

    Article  Google Scholar 

  21. L.F. Zhu, B.P. Zhang, J.Q. Duan, B.W. Xun, N. Wang, Y.C. Tang, G.L. Zhao, Enhanced piezoelectric and ferroelectric properties of BiFeO3–BaTiO3 lead-free ceramics by optimizing the sintering temperature and dwell time. J. Eur. Ceram. Soc. 38, 3463–3471 (2018)

    Article  CAS  Google Scholar 

  22. S. Cheng, B.P. Zhang, L. Zhao, K.K. Wang, Enhanced insulating and piezoelectric properties of 0.7BiFeO3–0.3BaTiO3 lead-free ceramics by optimizing calcination temperature: analysis of Bi3+ volatilization and phase structures. J. Mater. Chem. C 6, 3982–3989 (2018)

    Article  CAS  Google Scholar 

  23. G.-Y. Zhang, J.-Q. Dai, Lu. Yong-Shen, Phase structure and electrical properties of (1–x)Bi1+yFeO3–xBaTiO3 lead-free ceramics with different Bi contents. J. Mater. Sci. Mater. Electron. 32, 10289–10298 (2021)

    Article  CAS  Google Scholar 

  24. Y.X. Wei, X.T. Wang, J.T. Zhu, X.L. Wang, J.J. Jia, Dielectric, ferroelectric, and piezoelec-tric properties of BiFeO3–BaTiO3 ceramics. J. Am. Ceram. Soc. 96(10), 3163–3168 (2013)

    Article  CAS  Google Scholar 

  25. T. Zheng, Z.G. Jiang, J.G. Wu, Enhanced piezoelectricity in (1–x)Bi1.05Fe1yAyO3–BaTiO3 lead-free ceramics: site engineering and wide phase boundary region. Dalton Trans. 45, 11277–11285 (2016)

    Article  CAS  Google Scholar 

  26. T.-F. Cao, J.-Q. Dai, X.-W. Wang, Physical properties of Al doped BiFeO3 obtain by sol–gel route and two-step sintering process. Ceram. Int. 46(6), 7954–7960 (2020)

    Article  CAS  Google Scholar 

  27. X.-Y. Li, J.-Q. Dai, T.-F. Cao, X.-W. Wang, Structure and physical properties of (Zn, Ti) co-doped BiFeO3 ceramics prepared using three different processes. Ceram. Int. 45(4), 5015–5022 (2019)

    Article  CAS  Google Scholar 

  28. N.N. Wathore, C.M. Lonkar, D.K. Kharat, Effect of temperature on polarization reversal of strontium-doped lead zirconate titanate (PSZT) ceramics. Bull. Mater. Sci. 34(1), 129–132 (2011)

    Article  CAS  Google Scholar 

  29. N. Kumar, A. Shukla, R.N.P. Choudhary, Structure, dielectric, electric and magnetic characteristics of lead-free multiferroic: Bi(Cd0.5Ti0.5)O3–BaTiO3 solid solution. J. Alloys Compd. 747, 895–904 (2018)

    Article  CAS  Google Scholar 

  30. G.L. Yuan, S.W. Or, Y.P. Wang, J.M. Liu, Preparation and muti-properties of insulated single-phase BiFeO3 ceramics. Soild State Commun. 138, 76–81 (2006)

    Article  CAS  Google Scholar 

  31. Z. Cen, H. Yang, Q. Zhou, J. Cheng, C. Yuan, Effect of sintering temperature on microstructure and piezoelectric properties of Pb-free BiFeO3–BaTiO3 ceramics in the composition range of large BiFeO3 concentrations. J. Electroceram. 31, 15–20 (2013)

    Article  CAS  Google Scholar 

  32. H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, W. Li, Piezoelectric properties and temperature stabilities of Mn-and Cu-modified BiFeO3–BaTiO3 high temperature ceramics. J. Eur. Ceram. Soc. 33(6), 1177–1183 (2013)

    Article  CAS  Google Scholar 

  33. H. Amorin, C. Correas, C.M. Fernandez-Posada, O. Peña, A. Castro, M. Algueró, Multiferroism and enhancement of material properties across the morphotropic phase boundary of BiFeO3–PbTiO3. J. Appl. Phys. 115(10), 104104 (2014)

    Article  Google Scholar 

  34. L. Fan, J. Chen, S. Li, H. Kang, L. Liu, L. Fang, Enhanced piezoelectric and ferroelectric properties in the BaZrO3 substituted BiFeO3–PbTiO3. Appl. Phys. Lett. 102(2), 022905 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52073129 and 51762030).

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52073129 and 51762030).

Author information

Authors and Affiliations

Authors

Contributions

G-DZ involved in methodology, investigation, data Visualization, writing—original draft, writing—review and editing. J-QD involved in conceptualization, supervision, resources and review. G-YZ: participated in contribution in material synthesis. Y-SL took part in technical support, supervision and manuscript revision.

Corresponding author

Correspondence to Jian-Qing Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

All the authors consent to participate and submit this manuscript to Journal of Materials Science: Materials in Electronics.

Consent for publication

All the authors consent for publication of this paper in Journal of Materials Science: Materials in Electronics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, GD., Dai, JQ., Zhang, GY. et al. Enhanced electrical properties of 0.7BiFeO3–0.3BaTiO3 lead-free ceramics obtained by optimizing the calcination temperature and time. J Mater Sci: Mater Electron 33, 10226–10233 (2022). https://doi.org/10.1007/s10854-022-08011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08011-4

Navigation