Skip to main content

Advertisement

Log in

Synthesis of three-dimensional multifunctional Co3O4 nanostructures for electrochemical supercapacitors and H2 production

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Co3O4 nanomaterials are grown in situ on nickel foam by a facile two-step method, and their electrochemical properties for supercapacitors and electrochemical H2 production are systematically investigated. As an electrode material for supercapacitors, the Co3O4/NF nanomaterials have a specific capacitance of 4705 mF/cm2 at a current density of 2.5 mA/cm2 in 6 M KOH solution with good cycling stability. The asymmetric supercapacitor assembled with Co3O4/NF (positive) and activated carbon (negative) exhibits high energy storage capacity (2023 mF/cm2 at 5 mA/cm2), good rate performance and cycling stability. In addition, the Co3O4/NF nanocomposites exhibit excellent catalytic performance in electrolytic aquatic hydrogen. In 1 M KOH electrolyte, a potential of only 225 mV is required to provide a current density of 30 mA/cm2. Furthermore, increasing the temperature enhances the catalytic performance of the material, which provides the possibility of using industrial production waste heat to catalyze hydrogen production. Therefore, this study not only shows the great potential of Co3O4/NF nanocomposites as a supercapacitor cathode material, but also indicates its great opportunity for hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are freely available from the corresponding author for non-commercial purpose, without breaching participant confidentiality.

References

  1. J. Ma, H. Wei, Y. Liu et al., Application of Co3O4-based materials in electrocatalytic hydrogen evolution reaction: a review. Int. J. Hydrog. Energy 45, 21205 (2020)

    Article  CAS  Google Scholar 

  2. J. Niu, J. Yang, A.I. Channa et al., Enhancing the water splitting performance via decorating Co3O4 nanoarrays with ruthenium doping and phosphorization. RSC Adv. 10, 27235 (2020)

    Article  CAS  Google Scholar 

  3. Y. Song, B. Xu, T. Liao, J. Guo, Y. Wu, Z. Sun, Electronic structure tuning of 2D metal (Hydr)oxides nanosheets for electrocatalysis. Small 17, 2002240 (2021)

    Article  CAS  Google Scholar 

  4. D. Cui, Y. Li, Y. Li et al., Co3O4@MnMoO4 Nanorod clusters as an electrode material for superior supercapacitors. Int. J. Electrochem. Sci. 15, 2776 (2020)

    Article  CAS  Google Scholar 

  5. X. Fan, P. Ohlckers, X. Chen, Tunable synthesis of hollow Co3O4 nanoboxes and their application in supercapacitors. Appl. Sci. 10, 1208 (2020)

    Article  CAS  Google Scholar 

  6. M.K. Paliwal, S.K. Meher, Co3O4/NiCo2O4 perforated nanosheets for highenergy-density all-solid-state asymmetric supercapacitors with extended cyclic stability. ACS Appl. Nano Mater. 3, 4241 (2020)

    Article  CAS  Google Scholar 

  7. S. Hussain, X.Y. Yang, M.K. Aslam, A. Shaheen, M.S. Javed, N. Aslam, B. Aslam, G.W. Liu, G.J. Qiao, Robust TiN nanoparticles polysulfide anchor for Li-S storage and diffusion pathways using first principle calculations. Chem. Eng. J. 391, 123595 (2020)

    Article  CAS  Google Scholar 

  8. S. Hussain, A.J. Khan, M. Arshad, M.S. Javed, A. Ahmad, S.S.A. Shah, M.R. Khan, S. Akram, S. Ali, Z.A. ALOthman, G.W. Liu, A. Shaheen, G.J. Qiao, Charge storage in binder-free 2D-hexagonal CoMoO4 nanosheets as a redox active material for pseudocapacitors. Ceram. Int. 47, 8659 (2021)

    Article  CAS  Google Scholar 

  9. C. Lai, Y. Sun, B. Lin, Synthesis of sandwich-like porous nanostructure of Co3O4-rGO for flexible all-solid-state high-performance asymmetric supercapacitors. Mater. Today Energy 13, 342 (2019)

    Article  Google Scholar 

  10. G. Liu, C. Kang, J. Fang, L. Fu, H. Zhou, Q. Liu, MnO2 nanosheet-coated Co3O4 complex for 1.4 V extra-high voltage supercapacitors electrode material. J. Power Sources 431, 48 (2019)

    Article  CAS  Google Scholar 

  11. S. Hussain, M. Hassan, M.S. Javed, A. Shaheen, S.S.A. Shah, M.T. Nazir, T. Najam, A.J. Khan, X.Z. Zhang, G.W. Liu, Distinctive flower-like CoNi2S4 nanoneedle arrays (CNS–NAs) for superior supercapacitor electrode performances. Ceram. Int. 46, 25942 (2020)

    Article  CAS  Google Scholar 

  12. S. Hussain, M.S. Javed, S. Asim, A. Shaheen, A.J. Khan, Y. Abbas, N. Ullah, A. Iqbal, M.S. Wang, G.J. Qiao, S. Yun, Novel gravel like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram. Int. 46, 6406 (2020)

    Article  CAS  Google Scholar 

  13. R.M. Obodo, E.O. Onah, H.E. Nsude et al., Performance evaluation of graphene oxide based Co3O4@GO, MnO2@GO and Co3O4/MnO2@GO electrodes for supercapacitors. Electroanalysis 32, 2786 (2020)

    Article  CAS  Google Scholar 

  14. T. Zhai, L. Wan, S. Sun et al., Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors. Adv. Mater. 29, 1604167 (2017)

    Article  CAS  Google Scholar 

  15. J. Liu, J. Jiang, C. Cheng et al., Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv. Mater. 23, 2076 (2011)

    Article  CAS  Google Scholar 

  16. J. Tian, Y. Xue, X. Yu, Y. Pei, H. Zhang, Co3O4 nanorods with prevalent oxygen-vacancies confined by PDA-RGO nanosheets for excellent performances in supercapacitors. J. Solid State Chem. 297, 122076 (2021)

    Article  CAS  Google Scholar 

  17. Y. Zhang, L. Chang, X. Chang et al., Combining in-situ sedimentation and carbon-assisted synthesis of Co3O4/g-C3N4 nanocomposites for improved supercapacitor performance. Diam. Relat. Mater. 111, 108165 (2021)

    Article  CAS  Google Scholar 

  18. Y. Zhou, X. Li, J. Li et al., MOF-derived Co3O4-C/Ni2P2O7 electrode material for high performance supercapacitors. Chem. Eng. J. 378, 122242 (2019)

    Article  CAS  Google Scholar 

  19. M. Saraf, R. Rajak, S.M. Mobin, MOF derived high surface area enabled porous Co3O4 nanoparticles for supercapacitors. ChemistrySelect 4, 8142 (2019)

    Article  CAS  Google Scholar 

  20. X. Wang, Y. Yang, F. Zhang, J. Tang, Z. Guo, Facile synthesis of Co3O4/CdO nanospheres as high rate performance supercapacitors. Mater. Lett. 261, 127141 (2020)

    Article  CAS  Google Scholar 

  21. Y.-R. Zhu, P.-P. Peng, J.-Z. Wu, T.-F. Yi, Y. Xie, S. Luo, Co3O4@NiCo2O4 microsphere as electrode materials for high-performance supercapacitors. Solid State Ionics 336, 110 (2019)

    Article  CAS  Google Scholar 

  22. J. Jiang, Y. Chen, H. Cong et al., Highly efficient hydrogen evolution reaction of Co(3)O(4)supports on N-doped carbon nanotubes in an alkaline solution. Ionics 26, 3437 (2020)

    Article  CAS  Google Scholar 

  23. X. Zhao, F. Yin, X. He, B. Chen, G. Li, Efficient overall water splitting over a Mo(IV)-doped Co3O4/NC electrocatalyst. Int. J. Hydrog. Energy 46, 20905 (2021)

    Article  CAS  Google Scholar 

  24. A. Krishnan, S. Viswanath, A.C. Mohan, R. Panchami, P.V. Vishwanathan, Surface engineering of Ni-P electrode by cobalt oxide co-deposition for electrochemical hydrogen evolution reaction. J. Environ. Chem. Eng. 9, 105300 (2021)

    Article  CAS  Google Scholar 

  25. L.L. Wang, G. Zhou, H. Luo, Q.F. Zhang, J. Wang, C.W. Zhao, A.M. Rao, B. Xu, B.A. Lu, Enhancing catalytic activity of tungsten disulfide through topology. Appl. Catal. B 256, 117802 (2019)

    Article  CAS  Google Scholar 

  26. L.L. Wang, X. Liu, Q.F. Zhang, G. Zhou, Y. Pei, S.H. Chen, J. Wang, A.M. Rao, H.G. Yang, B.A. Lu, Quasi-one-dimensional Mo chains for efficient hydrogen evolution reaction. Nano Energy 61, 194–200 (2019)

    Article  CAS  Google Scholar 

  27. Q. Wu, A. Dong, C. Yang, L. Ye, L. Zhao, Q. Jiang, Metal-organic framework derived Co3O4@Mo-Co3S4-Ni3S2 heterostructure supported on Ni foam for overall water splitting. Chem. Eng. J. 413, 127482 (2021)

    Article  CAS  Google Scholar 

  28. S.-S. Xu, X.-W. Lv, Y.-M. Zhao, T.-Z. Ren, Z.-Y. Yuan, Engineering morphologies of cobalt oxide/phosphate-carbon nanohybrids for high-efficiency electrochemical water oxidation and reduction. J. Energy Chem. 52, 139 (2021)

    Article  Google Scholar 

  29. T. Liu, P. Diao, Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Res. 13, 3299 (2020)

    Article  CAS  Google Scholar 

  30. R. Que, S. Liu, Y. Yang, Y. Pan, Core-shell structure Co3O4@NiCo LDH was used as a high efficiency catalyst for overall water splitting. Mater. Lett. 288, 129364 (2021)

    Article  CAS  Google Scholar 

  31. Y. Wu, R. Sun, J. Cen, Facile synthesis of cobalt oxide as an efficient electrocatalyst for hydrogen evolution reaction. Front. Chem. 8, 386 (2020)

    Article  CAS  Google Scholar 

  32. S. Hussain, N. Ullah, Y. Zhang, A. Shaheen, M.S. Javed, L.Y. Lin, S.B. Shah, G.W. Liu, G.J. Qiao, One-step synthesis of unique catalyst Ni9S8@C for excellent MOR performances. Int. J. Hydrog. Energy 44, 24525 (2019)

    Article  CAS  Google Scholar 

  33. S.S. Jayaseelan, N. Bhuvanendran, Q. Xu, H. Su, Co3O4 nanoparticles decorated Polypyrrole/carbon nanocomposite as efficient bi-functional electrocatalyst for electrochemical water splitting. Int. J. Hydrog. Energy 45, 4587 (2020)

    Article  CAS  Google Scholar 

  34. F. Jiao, J. Li, J. Wang, Y. Lin, Y. Gong, X. Jing, Regulating the electronic structure of CoMoO4 microrod by phosphorus doping: an efficient electrocatalyst for the hydrogen evolution reaction. Dalton. Trans. 49, 13152 (2020)

    Article  CAS  Google Scholar 

  35. Y. Tong, H. Liu, M. Dai, L. Xiao, X. Wu, Metal-organic framework derived Co3O4/PPy bifunctional electrocatalysts for efficient overall water splitting. Chin. Chem. Lett. 31, 2295 (2020)

    Article  CAS  Google Scholar 

  36. J. Wang, Y.-F. Song, Synchronous electrocatalytic design of architectural and electronic structure based on bifunctional LDH-Co3O4/NF toward water splitting. Chem. Eur. J. 27, 3367 (2021)

    Article  CAS  Google Scholar 

  37. X. Wang, P. He, Y. Yang, Y. Pan, Z. Jin, R. Ling, Heterostructure Co3O4@NiWO4 nanocone arrays with enriched active area for efficient hydrogen evolution reaction. J. Alloy Compd. 844, 156095 (2020)

    Article  CAS  Google Scholar 

  38. F. Yang, Z. Guo, B. Zhang, E. Lei, A Co3O4/CuO composite nanowire array as low-cost and efficient bifunctional electrocatalyst for water splitting. Appl. Phys. A 127, 336 (2021)

    Article  CAS  Google Scholar 

  39. L.L. Wang, L.B. Xie, W.W. Zhao, S.J. Liu, Q. Zhao, Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution. Chem. Eng. J. 405, 127028 (2021)

    Article  CAS  Google Scholar 

  40. Z. Feng, J. Pu, X. Zhang et al., Heterostructured CoO/Co3O4 nanowire array on titanium mesh as efficient electrocatalysts for hydrogen evolution reaction. J. Alloy Compd. 881, 160603 (2021)

    Article  CAS  Google Scholar 

  41. M. Liu, T. Chen, W. Zhang, S. Wei, Y. Cheng, J. Liu, In situ construction of pollen-petal-like heterostructured Co3O4-CeO2 on 3D FeNi3 foam as a bifunctional catalyst for overall water splitting dagger. Sustain. Energy Fuels 5, 2181 (2021)

    Article  CAS  Google Scholar 

  42. S. Xiong, S. Weng, Y. Tang et al., Mo-doped Co3O4 ultrathin nanosheet arrays anchored on nickel foam as a bi-functional electrode for supercapacitor and overall water splitting. J. Colloid Interface Sci. 602, 355 (2021)

    Article  CAS  Google Scholar 

  43. P.M. Anjana, S.R. Sarath Kumar, R.B. Rakhi, MnCo2O4 nanoneedles self-organized microstructures for supercapacitors. Mater. Today Commun. 28, 102720 (2021)

    Article  CAS  Google Scholar 

  44. X.Q. Du, H. Su, X.S. Zhang, 3DMnCo2O4@CoS nanoarrays with different morphologies as an electrocatalyst for oxygen evolution reaction. Int. J. Hydrog. Energy 39, 21637 (2019)

    Article  CAS  Google Scholar 

  45. L. Wang, X.H. Liu, X. Wang, X.J. Yang, L.D. Lu, Electrochemical capacitance study on Co3O4 nanowires for super capacitors applications. J. Mater. Sci. 22, 601 (2011)

    CAS  Google Scholar 

  46. I.G. Casella, M. Gatta, Study of the electrochemical deposition and properties of cobalt oxides pecies in citrate alkaline solutions. J. Electroanal. Chem. 534, 31 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the Natural Science Foundation of Hu’nan Province (Grant No. 2021JJ30708), Foundation of Hu’nan Educational Committee (Grant No. 18A149), Postgraduate Scientific Research Innovation project of Hu’nan Province (CX20200903), the International Collaboration Program, CSUST (No. 2018IC28), the Creative Program from College of Materials Science and Engineering, CSUST, and the project from Yuelu Mountain National University, Science and Technology Town.

Author information

Authors and Affiliations

Authors

Contributions

SL: Designing experiments, Analysis of data, Writing-editing; JF: Conceptualization, Supervision, Funding acquisition, Writing—Review & Editing; GX: Analysis of data, Discussion; SG: Formal analysis, Discussion; KC: Experiments, Formal analysis and Discussion; CN: Experiments, Formal analysis and Discussion; WL: Review & Editing, Formal analysis and Discussion; HJ: Review & Editing, Formal analysis and Discussion; ZC: Conceptualization, Writing—Review & Editing. All authors have given approval to the version of the manuscript.

Corresponding authors

Correspondence to Jincheng Fan or Zisheng Chao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Fan, J., Xiao, G. et al. Synthesis of three-dimensional multifunctional Co3O4 nanostructures for electrochemical supercapacitors and H2 production. J Mater Sci: Mater Electron 33, 10207–10225 (2022). https://doi.org/10.1007/s10854-022-08010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08010-5

Navigation