Skip to main content
Log in

New lithium bismuth phosphate ceramic: crystal structure, microstructure, microwave dielectric properties and co-firing compatibility with aluminum electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new type of lithium bismuth phosphate 3Li2O–Bi2O3–6P2O5 (3L1B6P) microwave dielectric ceramics were prepared via a conventional solid-state route. Crystal structure, microstructure, microwave dielectric properties and aluminum electrode co-firing compatibility of the 3L1B6P ceramics were investigated. The 3L1B6P ceramics mainly consists of a new phase similar to the NdLiP4O12 with monoclinic structure [C2/C(15)]. The 3L1B6P ceramics are composed of BiLiP4O12 grains of ~ 10 μm in length and ~ 2 μm in width and BiPO4 grains of ~ 1 μm in size. The 3L1B6P ceramic sintered at 625 °C shrinkage and the corresponding microwave dielectric properties are dielectric constant εr = 6.8, Q × f = 16,900 GHz and negative temperature coefficient of resonant frequency TCF = − 71 ppm/°C. More importantly, the 3L1B6P ceramic with ultra-low sintering temperature (625 °C) can be co-fired with aluminum electrode, which illustrates it can be applied for the ultra-low temperature co-fired ceramic (ULTCC) application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. P.S. Anjana, M.T. Sebastian, J. Am. Ceram. Soc. (2009). https://doi.org/10.1111/j.1551-2916.2008.02756.x

    Article  Google Scholar 

  2. H.H. Guo, D. Zhou, C. Du et al., J. Mater. Chem. C. (2020). https://doi.org/10.1039/d0tc00326c

    Article  Google Scholar 

  3. X.-Q. Song, W. Lei, Y.-Y. Zhou et al., J. Am. Ceram. Soc. (2020). https://doi.org/10.1111/jace.16795

    Article  Google Scholar 

  4. M.R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, J.J. Santiago-Aviles, Sens. Actuators A (2001). https://doi.org/10.1016/s0924-4247(00)00554-9

    Article  Google Scholar 

  5. M. Gongora-Rubio, L.M. Sola-Laguna, P.J. Moffett, J.J. Santiago-Aviles, Sens. Actuators A (1999). https://doi.org/10.1016/s0924-4247(98)00238-6

    Article  Google Scholar 

  6. Y.J. Cheng, Y.X. Guo, X.Y. Bao, K.B. Ng, IEEE Trans. Antennas Propag. (2014). https://doi.org/10.1109/tap.2013.2293152

    Article  Google Scholar 

  7. T.H. Hsu, C.L. Huang, J. Eur. Ceram. Soc. (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.05.033

    Article  Google Scholar 

  8. J.Q. Ren, K. Bi, X.L. Fu, Z.J. Peng, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.153867

    Article  Google Scholar 

  9. M.T. Sebastian, H. Wang, H. Jantunen, Curr. Opin. Solid State Mater. (2016). https://doi.org/10.1016/j.cossms.2016.02.004

    Article  Google Scholar 

  10. Y.J. Gu, X.H. Yang, X.B. Ding et al., J. Mater. Sci.-Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04376-6

    Article  Google Scholar 

  11. H. Zhou, X. Liu, X. Chen, L. Fang, Mater. Chem. Phys. (2012). https://doi.org/10.1016/j.matchemphys.2012.09.004

    Article  Google Scholar 

  12. I. Kagomiya, Y. Kodama, Y. Shimizu, K.I. Kakimoto, H. Ohsato, Y. Miyauchi, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.03.245

    Article  Google Scholar 

  13. S.-F. Wang, Y.-R. Wang, Y.-F. Hsu, J.-S. Tsai, J. Eur. Ceram. Soc. (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.01.020

    Article  Google Scholar 

  14. C. Pei, Y. Li, J. Tan et al., Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.07.250

    Article  Google Scholar 

  15. R. Naveenraj, E.K. Suresh, J. Dhanya, R. Ratheesh, Eur. J. Inorg. Chem. (2019). https://doi.org/10.1002/ejic.201801369

    Article  Google Scholar 

  16. A. Sasidharanpillai, C.H. Kim, C.H. Lee, M.T. Sebastian, H.T. Kim, ACS Sustain. Chem. Eng. (2018). https://doi.org/10.1021/acssuschemeng.8b00656

    Article  Google Scholar 

  17. D. Zhou, C.A. Randall, L.-X. Pang et al., J. Am. Ceram. Soc. (2011). https://doi.org/10.1111/j.1551-2916.2010.04312.x

    Article  Google Scholar 

  18. S.-Z. Hao, D. Zhou, C. Du et al., ACS Appl. Electron. Mater. (2021). https://doi.org/10.1021/acsaelm.1c00193

    Article  Google Scholar 

  19. E.-C. Xiao, J. Li, J. Wang, C. Xing, M. Guo, H. Qiao, G. Dou, F. Shi, J. Materiomics (2018). https://doi.org/10.1016/j.jmat.2018.08.004

    Article  Google Scholar 

  20. I.-S. Cho, J.-R. Kim, D.-W. Kim, K.S. Hong, J. Electroceram. (2006). https://doi.org/10.1007/s10832-006-9883-3

    Article  Google Scholar 

  21. E.-C. Xiao, Z. Cao, J. Li, X.-H. Li, M. Liu, Z. Yue, Y. Chen, G. Chen, K. Song, H. Zhou, F. Shi, J. Am. Ceram. Soc. (2020). https://doi.org/10.1111/jace.16933

    Article  Google Scholar 

  22. I.-S. Cho, G.K. Choi, J.-S. An, J.-R. Kim, K.S. Hong, Mater. Res. Bull. (2009). https://doi.org/10.1016/j.materresbull.2008.03.016

    Article  Google Scholar 

  23. J.I. Bian, D.W. Kim, K.S. Hong, JPN J. Appl. Phys. (2004). https://doi.org/10.1143/jjap.43.3521

    Article  Google Scholar 

  24. D. Thomas, M.T. Sebastian, J. Am. Ceram. Soc. (2011). https://doi.org/10.1111/j.1551-2916.2011.04639.x

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangxi (No. 2019GXNSFBA185037), Science and Technology Base and Talent Special Project of Guangxi (No. AD19110017) and Guangxi Key Laboratory of Embedded Technology and Intelligent Systems (No. 2020-2-1).

Author information

Authors and Affiliations

Authors

Contributions

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript using our scientific data. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication.

Corresponding author

Correspondence to Xiaobin Liu.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, S., Wang, H. et al. New lithium bismuth phosphate ceramic: crystal structure, microstructure, microwave dielectric properties and co-firing compatibility with aluminum electrode. J Mater Sci: Mater Electron 33, 10114–10120 (2022). https://doi.org/10.1007/s10854-022-08001-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08001-6

Navigation