Skip to main content

Advertisement

Log in

A facile one-pot hydrothermal synthesis of cobalt sulfide nanospheres integrated with graphene nanocomposite as electrode material for high-performance supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transition metal chalcogenides have fascinating characteristics are considered as electrode materials for high-performance energy storage devices. Herein, we report the CoS/G nanocomposite was successfully synthesized by a simple one-pot hydrothermal method. The phase formation and morphology of the obtained materials were analyzed by various techniques. The electrochemical properties of the prepared electrode materials were assessed from cyclic voltammetry in a three-electrode system. The obtained cyclic voltammetry curves demonstrate pseudocapacitive behavior for prepared materials due to the synergistic effect between Cobalt and sulfur. The Galvanometric Charge Discharge (GCD) profile of the materials confirms the pseudocapacitive nature and specific capacitance calculated from these curves. The CoS/G nanocomposite delivered high specific capacitance 739.83 Fg−1 compared to the pure CoS nanospheres 390 Fg−1 and prolonged cyclic stability with 91.2% capacity retention after 3000 cycles. Overall, these excellent electrochemical performances indicate the CoS/G nanocomposite as a desirable electrode material for commercial supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Authors can confirm that all relevant data are included in the article.

References

  1. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  CAS  Google Scholar 

  2. Y. Xiaowei, Z. Junwu, Q. Ling, L. Dan, Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv. Mater. 23, 2833–2838 (2011). https://doi.org/10.1002/adma.201100261

    Article  CAS  Google Scholar 

  3. Z. Haitao, Z. Xiong, Z. Dacheng, S. Xianzhong, He. Lin, W. Changhui, M. Yanwei, One-step electrophoretic deposition of reduced graphene oxide and Ni(OH)2 composite films for controlled syntheses supercapacitor electrodes. J. Phys. Chem. B 117, 1616–1627 (2013). https://doi.org/10.1021/jp305198j

    Article  CAS  Google Scholar 

  4. K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal, T. Alagesan, Structural, magnetic and electrochemical characterizations of Bi2Mo2O9 nanoparticle for supercapacitor application. J. Magn. Magn Mater 486(15), 165254 (2019)

    Article  CAS  Google Scholar 

  5. K. Seevakan, A. Manikandan, P. Devendran, Y. Slimani, A. Baykal, T. Alagesan, Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode. Ceram. Int. 44(16), 20075–20083 (2018)

    Article  CAS  Google Scholar 

  6. O.G. Gnonhoue, A. Velazquez-Salazar, É. David, I. Preda, Review of technologies and materials used in high-voltage film capacitors. Polymers 13(5), 766 (2021). https://doi.org/10.3390/polym13050766

    Article  CAS  Google Scholar 

  7. A. Abdelkareem, M. Ali, E. Khaled, W. Tabbi, K. Mohammed, S.E. Taha, A. Olabi, Environmental aspects of fuel cells: a review. Sci. Total Environ. 752, 141803 (2020). https://doi.org/10.1016/j.scitotenv.2020.141803

    Article  CAS  Google Scholar 

  8. Z. Luojiang, W. Haitao, Z. Xiaoming, T. Yongbing, A review of emerging dual-ion batteries: fundamentals and recent advances. Adv. Func. Mater. 31, 20 (2021). https://doi.org/10.1002/adfm.202010958

    Article  CAS  Google Scholar 

  9. J. Xie, Y.C. Lu, A retrospective on lithium-ion batteries. Nat. Commun. 11, 2499 (2020). https://doi.org/10.1038/s41467-020-16259-9

    Article  CAS  Google Scholar 

  10. Z. Meng, L. Bo-Quan, Z. Xue-Qiang, H. Jia-Qi, Z. Qiang, A perspective toward practical lithium-sulfur batteries ACS cent. Sci. 6(7), 1095–1104 (2020)

    Google Scholar 

  11. K. Binoy, S. Saikiaa, B. Maria, B. Mousumi, T. Joyshil, P. Mayank, B. Dhurbajyoti, A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel 282, 118796 (2020). https://doi.org/10.1016/j.fuel.2020.118796

    Article  CAS  Google Scholar 

  12. R. Chen, Y. Miao, R.P. Sahu, K.P. Ishwar, Z. Igor, The development of pseudocapacitor electrodes and devices with high active mass loading. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.201903848

    Article  Google Scholar 

  13. L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20, 5983–5992 (2010). https://doi.org/10.1039/C000417K

    Article  CAS  Google Scholar 

  14. R. Dubey, V. Guruviah, Review of carbon-based electrode materials for supercapacitor energy storage. Ionics 25(4), 1419–1445 (2019). https://doi.org/10.1007/s11581-019-02874-0

    Article  CAS  Google Scholar 

  15. X. Zhang, H. Zhang, Z. Lin, M. Yu, X. Lu, Y. Tong, Recent advances and challenges of stretchable supercapacitors based on carbon materials. Sci. China Mater. 59(6), 475–494 (2016). https://doi.org/10.1007/s40843-016-5061-1

    Article  CAS  Google Scholar 

  16. I.K. Durga, S.S. Rao, M. Jagadeesh, A.E. Reddy, T. Anitha, H.J. Kim, Synthesis of nanostructured metal sulfides via a hydrothermal method and their use as an electrode material for supercapacitors. New J. Chem. 42, 19183–19192 (2018)

    Article  Google Scholar 

  17. R. Chen, Y. Miao, R.P. Sahu, K.P. Ishwar, I. Zhitomirsky, The development of pseudocapacitor electrodes and devices with high active mass loading. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.201903848

    Article  Google Scholar 

  18. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014). https://doi.org/10.1039/C3EE44164D

    Article  CAS  Google Scholar 

  19. S. Khamlich, Z. Abdullaeva, J.V. Kennedy, M. Maaza, High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite. Appl. Surf. Sci. 405(31), 329–336 (2017)

    Article  CAS  Google Scholar 

  20. J. Ge, B. Wang, J. Wang, Q. Zhang, B. Lu, Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv. Energy Mater. 10(4), 1903277 (2020)

    Article  CAS  Google Scholar 

  21. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010). https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

  22. K. Suenne, Z. Si, H. Yike, A. Muge, J. Yves, C.B. Chabal, H. de Walt, B. Angelo, R. Elisa, Room-temperature metastability of multilayer graphene oxide films. Nat. Mater. 11, 544–549 (2012). https://doi.org/10.1038/nmat3316

    Article  CAS  Google Scholar 

  23. W. Sun, G. Gao, Y. Du, K. Zhang, G. Wu, A facile strategy for fabricating hierarchical nanocomposites of V2O5 nanowire arrays on a three-dimensional N-doped graphene aerogel with a synergistic effect for supercapacitors. J. Mater. Chem. A 6, 9938–9947 (2018)

    Article  CAS  Google Scholar 

  24. K. Gopalakrishnan, S. Sultan, A. Govindaraj, C.N.R. Rao, Supercapacitors based on composites of PANI with nanosheets of nitrogen doped RGO, BC1.5N, MoS2 and WS2. Nano Energy 12, 52–58 (2015)

    Article  CAS  Google Scholar 

  25. B. Xie, Y. Chen, Yu. Mengying, Tu. Sun, Lu. Luhua, T. Xie, Y. Zhang, Wu. Yucheng, Hydrothermal synthesis of layered molybdenum sulfide/N-doped graphene hybrid with enhanced supercapacitor performance. Carbon 99, 35–42 (2016). https://doi.org/10.1016/j.carbon.2015.11.077

    Article  CAS  Google Scholar 

  26. R. Balu, A. Dakshanamoorthy, A simple hydrothermal synthesis of cadmium sulfide wrapped on graphene nanocomposite for supercapacitor applications. J. Nanosci. Nanotechnol. 21(12), 5835–5845 (2021). https://doi.org/10.1166/jnn.2021.19503

    Article  CAS  Google Scholar 

  27. R. Balu, A. Dakshanamoorthy, Synthesis of wool ball-like copper sulfide nanospheres embedded graphene nanocomposite as electrode for high performance symmetric supercapacitor device. Int. J. Energy Res. 24, 1–15 (2021)

    Google Scholar 

  28. R. Balu, A. Dakshanamoorthy, One-pot preparation of tin sulfide decorated graphene nanocomposite for high performance supercapacitor applications. Inorg. Chem. Commun. 136, 109148 (2022)

    Article  CAS  Google Scholar 

  29. C.A. Pandey, S. Ravuri, R. Ramachandran, R. Santhosh, S. Ghosh, S.R. Sitaraman, A.N. Grace, Grace synthesis of NiS–graphene nanocomposites and its electrochemical performance for supercapacitors. Int. J. Nanosci. 17, 1760021 (2018). https://doi.org/10.1142/S0219581X17600213

    Article  CAS  Google Scholar 

  30. R. Ramachandran, M. Saranya, P. Kollu, B.P. Raghupathy, S.K. Jeong, A.N. Grace, Solvothermal synthesis of Zinc sulfide decorated Graphene (ZnS/G) nanocomposites for novel supercapacitor electrodes. Electrochim. Acta 178(1), 647–657 (2015)

    Article  CAS  Google Scholar 

  31. M. Mao, L. Mei, L. Wu, Q. Li, M. Zhang, Facile synthesis of cobalt sulfide/carbon nanotube shell/core composites for high performance supercapacitors. RSC Adv. 4, 12050–12056 (2014). https://doi.org/10.1039/C4RA00485J

    Article  CAS  Google Scholar 

  32. F. Tao, Y.Q. Zhao, G.Q. Zhang, H.L. Li, Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors. Electrochem. Commun. 9, 1282–1287 (2007). https://doi.org/10.1016/j.elecom.2006.11.022.19

    Article  CAS  Google Scholar 

  33. K.J. Huang, J.Z. Zhang, G. Shi, Y.M. Shi, One-step hydrothermal synthesis of two-dimensional cobalt sulfide for high-performance supercapacitors. Mater. Lett. 131, 45–48 (2014). https://doi.org/10.1016/j.matlet.2014.05.148

    Article  CAS  Google Scholar 

  34. Z. Yang, C.Y. Chen, H.T. Chang, Supercapacitors incorporating hollow cobalt sulfide hexagonal nanosheets. J. Power Sources 196, 7874–7877 (2011). https://doi.org/10.1016/j.jpowsour.2011.03.072

    Article  CAS  Google Scholar 

  35. K.J. Huang, J.Z. Zhang, G.W. Shi, Y.M. Liu, One-step hydrothermal synthesis of two-dimensional cobalt sulfide for high-performance supercapacitors. Mater. Lett. 131, 45–48 (2014). https://doi.org/10.1016/j.matlet.2014.05.148

    Article  CAS  Google Scholar 

  36. M.M. Shahid, A. Pandikumar, A.M. Golsheikh, N.M. Huang, H.N. Lim, Enhanced electrocatalytic performance of cobalt oxide nanocubes incorporating reduced graphene oxide as a modified platinum electrode for methanol oxidation. RSC Adv. 4, 62793–62801 (2014). https://doi.org/10.1039/C4RA08952A

    Article  CAS  Google Scholar 

  37. S.J. Peng, L.L. Li, X.P. Han, W.P. Sun, M. Srinivasan, F.Y. Cheng, Q.Y. Yan, J. Chen, S. Ramakrishna, Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem. Int. Ed. 53, 12594–12599 (2014). https://doi.org/10.1002/anie.201408876

    Article  CAS  Google Scholar 

  38. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)

    Article  CAS  Google Scholar 

  39. E. Sathiyaraj, S. Thirumaran, Structural, morphological and optical properties of iron sulfide, cobalt sulfide, copper sulfide, zinc sulfide and copper-iron sulfide nanoparticles synthesized from single source precursors. Chem. Phys. Lett. (2019). https://doi.org/10.1016/j.cplett.2019.136972

    Article  Google Scholar 

  40. F. Tuinstra, J.L. Koening, Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970). https://doi.org/10.1063/1.1674108

    Article  CAS  Google Scholar 

  41. C.J. Fu, G.G. Zhao, H.J. Zhang, S. Li, A facile route to controllable synthesis of Fe3O4/graphene composites and their application in lithium-ion batteries. Int. J. Electrochem. Sci. 9, 46–60 (2014)

    Google Scholar 

  42. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y.Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  43. C. Xu, Y. Jing, J.R. He, K.R. Zhou, Y.F. Chen, Q. Li, J. Lin, W.L. Zhang, Self-assembled interwoven CoS2/CNTs/graphene architecture as anode for high-performance lithium ion batteries. J. Alloys Compd. 708, 1178–1183 (2017). https://doi.org/10.1016/j.jallcom.2017.03.099

    Article  CAS  Google Scholar 

  44. R. Ramachandran, S. Felix, M. Saranya, C. Santhosh, V. Velmurugan, B.P. Ragupathy, S.K. Jeong, A.N. Grace, Synthesis of cobalt sulfide-graphene (CoS/G) nanocomposites for supercapacitor applications. IEEE Trans. Nanotechnol. 12, 985–990 (2013). https://doi.org/10.1109/TNANO.2013.2278287

    Article  CAS  Google Scholar 

  45. V. Chabot, D. Higgins, A. Yu, X. Xiao, Z. Chena, J. Zhang, A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energy Environ. Sci. 7, 1564–1596 (2014). https://doi.org/10.1039/C3EE43385D

    Article  CAS  Google Scholar 

  46. M. Jianfei, S. Qian, W. Yaqiong, Y. Hongyan, X. Dan, M.M.F. Choi, Facile fabrication of porous CuS nanotubes using well-aligned [Cu(tu)]Cl⋅1/2H2O nanowire precursors as self-sacrificial templates. Cryst. Growth Des. 9, 2546–2548 (2009). https://doi.org/10.1021/cg8006052.27

    Article  Google Scholar 

  47. L. Guojun, C. Lili, W. Yanying, L. Ying, P. Tao, X. He, A novel cobalt tetranitrophthalocyanine/graphene composite assembled by an in situ solvothermal synthesis method as a highly efficient electrocatalyst for the oxygen reduction reaction in alkaline medium. Phys. Chem. Chem. Phys. 31, 13093–13100 (2013). https://doi.org/10.1039/C3CP51577J.29

    Article  Google Scholar 

  48. T.F. Emiru, D.W. Ayele, Controlled synthesis, characterization and reduction of graphene oxide: a convenient method for large scale production. Egypt. J. Basic Appl. Sci. 4(1), 74–79 (2017)

    Google Scholar 

  49. Q. Wang, L. Jiao, H. Du, Y. Si, Y. Wang, H. Yuan, Co3S4 hollow nanospheres grown on graphene as advanced electrode materials for supercapacitors. J. Mater. Chem. 22, 21387–21391 (2012). https://doi.org/10.1039/C2JM34714H

    Article  CAS  Google Scholar 

  50. J. Zhu, W. Zhou, Y. Zhou, X. Cheng, J. Yang, Cobalt Sulfide/reduced graphene oxide nanocomposite with enhanced performance for supercapacitors. J. Electron. Mater. 48, 3 (2019). https://doi.org/10.1007/s11664-018-06910-z

    Article  CAS  Google Scholar 

  51. S. Muhammad Mehmood, R. Perumal, P. Alagarsamy, L. Hong Ngee, N. Yun Hau, H. Nay Ming, An electrochemical sensing platform based on a reduced graphene oxide-cobalt oxide nanocube@ platinum nanocomposite for nitric oxide detection. J. Mater. Chem. A 3, 14458–14468 (2015). https://doi.org/10.1039/C5TA02608C

    Article  CAS  Google Scholar 

  52. K. Subramani, N. Sudhan, R. Divya, M. Sathish, All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Adv. 7, 6648–6659 (2017). https://doi.org/10.1039/C6RA27331A

    Article  CAS  Google Scholar 

  53. R. Balu, S. Sagadevan, A. Dakshanamoorthy, A cost effective, facile hydrothermal approach of zinc sulfide decorated on graphene nanocomposite for supercapacitor applications. J. Nanosci. Nanotechnol. 19, 6987–6994 (2019). https://doi.org/10.1166/jnn.2019.16670

    Article  CAS  Google Scholar 

  54. H. Chauhan, M.K. Singh, P. Kumar, S.A. Hashmi, S. Deka, Development of SnS2/rGO nanosheet composite for cost-effective aqueous hybrid supercapacitors. Nanotechnology 28(2), 025401 (2016). https://doi.org/10.1088/1361-6528/28/2/025401

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

RB: Preparation of samples, Collection of data, and Manuscript drafting, AD: Investigation and analysis of data, Writing-review & editing.

Corresponding author

Correspondence to Ranjith Balu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balu, R., Dakshanamoorthy, A. A facile one-pot hydrothermal synthesis of cobalt sulfide nanospheres integrated with graphene nanocomposite as electrode material for high-performance supercapacitors. J Mater Sci: Mater Electron 33, 10057–10071 (2022). https://doi.org/10.1007/s10854-022-07996-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07996-2

Navigation