Skip to main content

Advertisement

Log in

Structural, dielectric, and ferroelectric properties of BaTiO3–Bi(Ni1/2Ti1/2)O3 lead-free ceramics with remarkable energy storage performance under low electric fields

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to fabricate high-performance dielectric capacitors for pulsed power applications, (1 − x)BaTiO3xBi(Ni1/2Ti1/2)O3 [(1 − x)BT–xBNT] polycrystalline ceramics were prepared by solid-state reaction method. Profound structural tests by Raman spectrum and X-ray diffraction verified Ni2+ and Bi3+ partially substituted the Ti and Ba sites, respectively. Severe tetragonal to pseudocubic structural transition occurred in the case of x = 0.05 ~ 0.10. Frequency, intensity, and width changed in certain rules with x, suggesting local structures severely varied. From the complex impedance analysis, grain and grain boundary shared the same time constant. The high-temperature resistivity followed the Arrhenius law with Ea = 0.8–1.3 eV, suggesting the conductivity governed by the oxygen vacancies in the BT–BNT ceramics. Addition of BNT made the BT-based ceramics change from typical ferroelectric to relaxation ferroelectric and improved its energy storage and efficiency. At the optimum performance component x = 0.15, energy storage density up to 1.46 J/cm3, ultrahigh energy efficiency of 90.9%, and high-temperature/frequency stability were realized simultaneously under low electric fields. This study offers a feasible method to design high-energy storage lead-free ceramics under low electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Research data are not shared.

References

  1. J.L. Li, Z.H. Shen, X.H. Chen et al., Nat. Mater. 19, 1 (2020)

    Article  CAS  Google Scholar 

  2. D.X. Li, X.J. Zeng, Z.P. Li et al., J. Adv. Ceram. 10, 675 (2021)

    Article  CAS  Google Scholar 

  3. W.B. Li, D. Zhou, L.X. Pang, Appl. Phys. Lett. 110, 132902 (2017)

    Article  CAS  Google Scholar 

  4. T.F. Zhang, X.G. Tang, Q.X. Liu et al., J. Phys. D Appl. Phys. 49, 095302 (2016)

    Article  CAS  Google Scholar 

  5. D.G. Zheng, R.Z. Zong, J. Eur. Ceram. Soc. 37, 413 (2017)

    Article  CAS  Google Scholar 

  6. Z.K. Xie, Z.X. Yue, B. Peng et al., Appl. Phys. Lett. 106, 202901 (2015)

    Article  CAS  Google Scholar 

  7. C. Wang, N.N. Sun, Y. Li et al., J. Alloys. Compd. 810, 151796 (2019)

    Article  CAS  Google Scholar 

  8. Z.K. Xie, Z.X. Yue, G. Ruehl et al., Appl. Phys. Lett. 104, 243902 (2014)

    Article  CAS  Google Scholar 

  9. Z. Xie, B. Peng, Z. Jie et al., J. Am. Ceram. Soc. 98, 2968–2971 (2015)

    Article  CAS  Google Scholar 

  10. O. Garcia-Zaldivar, S. Diaz-Castanon, F.J. Espinoza-Beltran et al., J. Adv. Dielectr. 05, 1550034 (2015)

    Article  CAS  Google Scholar 

  11. X.B. Qiao, J. Xin, X.M. Nie, J. Taiwan Inst. Chem. Eng. 81, 406–413 (2017)

    Article  CAS  Google Scholar 

  12. H. Ogihara, C.A. Randall, S. Trolier-Mckinstry, J. Am. Ceram. Soc. 92, 110–118 (2010)

    Article  CAS  Google Scholar 

  13. H. Ogihara, C.A. Randall, S. Trolier-Mckinstry, J. Am. Ceram. Soc. 92, 1719–1724 (2010)

    Article  CAS  Google Scholar 

  14. L.W. Wu, B.C. Luo, E. Tian, J. Alloys. Compd. 866, 1589331 (2021)

    Google Scholar 

  15. W.B. Li, D. Zhou, L.X. Pang et al., J. Mater. Chem. A 5, 19607 (2017)

    Article  CAS  Google Scholar 

  16. Q.B. Yuan, F.Z. Yao, Y.F. Wang et al., J. Mater. Chem. C 5, 9552 (2017)

    Article  CAS  Google Scholar 

  17. G. Liu, Y. Li, M.Q. Shi et al., Ceram. Int. 45, 1918 (2019)

    Article  CAS  Google Scholar 

  18. L.W. Wu, X.H. Wang, L.T. Li, Rsc. Adv. 6, 14273 (2016)

    Article  CAS  Google Scholar 

  19. X.W. Jiang, H. Hao, S.J. Zhang et al., J. Eur. Ceram. Soc. 39, 1103 (2018)

    Article  CAS  Google Scholar 

  20. F. Si, B. Tang, Z.X. Fang et al., J. Mater. Sci. Mater. El. 30, 2772 (2019)

    Article  CAS  Google Scholar 

  21. Z.G. Liu, M.D. Li, Z.H. Tang et al., Chem. Eng. J. 418, 129379 (2021)

    Article  CAS  Google Scholar 

  22. W.B. Li, D. Zhou, R. Xu et al., Acs Appl. Energy Mater. 1, 5016 (2018)

    Article  CAS  Google Scholar 

  23. H.Y. Zhao, X.M. Yang, D.F. Pang et al., Ceram. Int. 47, 22734 (2021)

    Article  CAS  Google Scholar 

  24. G. Schileo, A. Feteira, K. Reichmann et al., J. Eur. Ceram. Soc. 35, 2479 (2015)

    Article  CAS  Google Scholar 

  25. S. Anand, R. Pandey, U. Shankar et al., J. Am. Ceram. Soc. 99, 3651 (2016)

    Article  CAS  Google Scholar 

  26. M. Meng, J.H. Zhang, K.T. Wu et al., Ceram. Int. 43, 9593 (2017)

    Article  CAS  Google Scholar 

  27. X.C. Huang, H. Hao, S.J. Zhang et al., J. Am. Ceram. Soc. 97, 1797 (2014)

    Article  CAS  Google Scholar 

  28. A. Scalabrin, A.S. Chaves, D.S. Shim et al., Phys. Status. Solidi. B 79, 731 (1977)

    Article  CAS  Google Scholar 

  29. V. Buscaglia, S. Tripathi, V. Petkov, et al., J. Phys.: Condens. Matter 26, 065901 (2014).

  30. T. Huang, Z.G. Hu, G.S. Xu et al., Appl. Phys. Lett. 104, 111908 (2014)

    Article  CAS  Google Scholar 

  31. J. Kreisel, P. Bouvier, M. Maglione et al., Phys. Rev. B 69, 092104 (2004)

    Article  CAS  Google Scholar 

  32. Z.Ž Lazarević, M.M. Vijatović, B.D. Stojanović et al., J. Alloys. Compd. 494, 472 (2010)

    Article  CAS  Google Scholar 

  33. J. Wang, Z.H. Zhou, J.M. Xue, Acta. Meter. 54, 1691–1698 (2006)

    Article  CAS  Google Scholar 

  34. L. Luo, W.W. Ge, J.F. Li et al., J. Appl. Phys. 09, 113507 (2011)

    Article  CAS  Google Scholar 

  35. D.D. Ma, X.L. Chen, G.S. Huang et al., Ceram. Int. 41, 7157 (2015)

    Article  CAS  Google Scholar 

  36. S.Y. Zheng, E. Odendo, L.J. Liu et al., J. Appl. Phys. 113, 305–320 (2013)

    Google Scholar 

  37. M. Gangulya, S.K. Rout, C.W. Ahn et al., Ceram. Int. 39, 9511 (2013)

    Article  CAS  Google Scholar 

  38. A. Feteira, D.C. Sinclair, M.T. Lanagan, J. Appl. Phys. 108, 014112 (2010)

    Article  CAS  Google Scholar 

  39. R. Farhi, M.E. Marssi, A. Simon et al., Eur. Phys. J. B. 9, 599 (1999)

    Article  CAS  Google Scholar 

  40. M. Zhu, H. Hu, L. Na et al., Appl. Phys. Lett. 94, 91 (2009)

    Google Scholar 

  41. Q. Xu, C. Min, C. Wen et al., Acta Materi. 56, 642 (2008)

    Article  CAS  Google Scholar 

  42. X.C. Huang, H.X. Liu, Z. Song et al., J. Eur. Ceram. Soc. 36, 533 (2016)

    Article  CAS  Google Scholar 

  43. C.C. Huang, D.P. Cann, J. Appl. Phys. 104, 024117 (2008)

    Article  CAS  Google Scholar 

  44. B. Xiong, H. Hao, S.J. Zhang et al., J. Am. Ceram. Soc. 94, 1 (2011)

    Article  CAS  Google Scholar 

  45. K. Uchino, S. Nomura, Ferroelectrics 44, 55 (1982)

    Article  CAS  Google Scholar 

  46. J. Zang, M. Li, D.C. Sinclair et al., J. Am. Ceram. Soc. 97, 1523 (2014)

    Article  CAS  Google Scholar 

  47. Q. Xu, M.T. Lanagan, X.C. Huang et al., Ceram. Int. 42, 9728 (2016)

    Article  CAS  Google Scholar 

  48. A. Peláiz-Barranco, Y. González Abreu, R. López-Noda, J. Phys. Condens. Mat. 20, 505208 (2008)

    Article  CAS  Google Scholar 

  49. N. Triamnak, R. Yimnirun, J. Pokorny et al., J. Am. Ceram. Soc. 96, 317 (2013)

    Article  CAS  Google Scholar 

  50. G.A. Samara, J. Phys. Condens. Matter. 15, R367 (2003)

    Article  CAS  Google Scholar 

  51. D.G. Zheng, R.Z. Zuo, J. Eur. Ceram. Soc. 37, 413 (2017)

    Article  CAS  Google Scholar 

  52. A. Jain, Y.G. Wang, H. Guo, Ceram. Int. 46, 24333 (2020)

    Article  CAS  Google Scholar 

  53. Q. Zhao, X. Wang, H. Gong et al., J. Am. Ceram. Soc. 101, 1245 (2018)

    Article  CAS  Google Scholar 

  54. X. Liu, H. Yang, F. Yan et al., J. Alloys. Compd. 778, 97 (2019)

    Article  CAS  Google Scholar 

  55. F. Li, M. Zhou, J. Zhai et al., J. Euro. Ceram. Soc. 38, 4646 (2018)

    Article  CAS  Google Scholar 

  56. W.G. Ma, Y.W. Zhu, M.A. Marwat et al., J. Mater. Chem. C 7, 281 (2019)

    Article  CAS  Google Scholar 

  57. D.K. Kushvaha, S.K. Rout, B. Tiwari, J. Alloys. Compd. 782, 270 (2019)

    Article  CAS  Google Scholar 

  58. Y.R. Xu, Y.D. Hou, H.Y. Zhao et al., Mater. Lett. 249, 21 (2019)

    Article  CAS  Google Scholar 

  59. S. Manotham, P. Jaita, C. Randorn et al., J. Alloys. Compd. 808, 151655 (2019)

    Article  CAS  Google Scholar 

  60. Q. Li, M.Y. Li et al., Ceram. Int. 45, 19822 (2019)

    Article  CAS  Google Scholar 

  61. L. Zhang, Y.P. Pu, M. Chen et al., J. Eur. Ceram. Soc. 40, 71 (2020)

    Article  CAS  Google Scholar 

  62. Z.B. Pan, D. Hu, Y. Zhang et al., J. Mater. Chem. C 7, 4072 (2019)

    Article  CAS  Google Scholar 

  63. L. Zhang, Y.P. Pu, M. Chen et al., Chem. Eng. J. 383, 123154 (2020)

    Article  CAS  Google Scholar 

  64. H. Wang, Q. Hu, X.Q. Liu et al., Ceram. Int. 45, 3233 (2019)

    Google Scholar 

  65. C. Wang, Q. Li, W.M. Zhang et al., Ceram. Int. 46, 715 (2020)

    Article  CAS  Google Scholar 

  66. B.B. Yan, H.Q. Fan, C. Wang et al., Ceram. Int. 46, 281 (2020)

    Article  CAS  Google Scholar 

  67. A. Verma, A.K. Yadav, S. Kumar et al., J. Mater. Sci. Mater. El. 30, 15005 (2019)

    Article  CAS  Google Scholar 

  68. J.N. Sui, H.Q. Fan, H.J. Peng et al., Ceram. Int. 45, 20427 (2019)

    Article  CAS  Google Scholar 

  69. K. Banerjee, S.B. Alvi, A.K. Rengan et al., J. Am. Ceram. Soc. 102, 6802 (2019)

    Article  CAS  Google Scholar 

  70. X.F. Zhou, H. Qi, Z.N. Yan et al., J. Eur. Ceram. Soc. 39, 4053 (2019)

    Article  CAS  Google Scholar 

  71. P. Chen, L.Y. Zhang, J.C. Cai et al., J. Mater. Sci. Mater. El. 30, 13556 (2019)

    Article  CAS  Google Scholar 

  72. X. Liu, Y.X. Zhao, J. Shi et al., J. Alloys. Compd. 799, 231 (2019)

    Article  CAS  Google Scholar 

  73. M. Chen, T.C. Wei, L. Zhang et al., J. Mater. Sci. Mater. El. 30, 11412 (2019)

    Article  CAS  Google Scholar 

  74. X.Y. Tong, M.W. Song, J.J. Zhou et al., J. Mater. Sci. Mater. El. 30, 5780 (2019)

    Article  CAS  Google Scholar 

  75. P. Shi, L.G. Zhu, W.W. Gao et al., J. Alloys. Compd. 784, 788 (2019)

    Article  CAS  Google Scholar 

  76. K. Han, N.N. Luo, Z.P. Chen et al., J. Eur. Ceram. Soc. 40, 3562 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Youth Foundation of Anhui Province (Grant No. 1808085QE153); the Natural Science key Project of Anhui Education Department (Grant No. KJ2018A0436); and the National University Students’ Innovation and Entrepreneurship Program (Grant No. 202010377021).

Author information

Authors and Affiliations

Authors

Contributions

XH contributed to investigation, methodology, writing of the original draft, and funding acquisition. SL contributed to investigation, methodology, and writing of the manuscript. CW contributed to resources and writing, reviewing, & editing of the manuscript. HL contributed to investigation and methodology. PC contributed to investigation and methodology. FX contributed to investigation and methodology. YC contributed to investigation, methodology, and reviewing of the manuscript.

Corresponding author

Correspondence to Xuechen Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Li, S., Wang, C. et al. Structural, dielectric, and ferroelectric properties of BaTiO3–Bi(Ni1/2Ti1/2)O3 lead-free ceramics with remarkable energy storage performance under low electric fields. J Mater Sci: Mater Electron 33, 10042–10056 (2022). https://doi.org/10.1007/s10854-022-07995-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07995-3

Navigation