Skip to main content
Log in

Superconductivity of Ga-In-Sn liquid alloy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The superconductor was first discovered in liquid metal Hg. Since then, the researches about superconductors have mainly focused on solid materials, instead of the liquid metal alloys. Recently, the gallium–indium–tin (Ga-In-Sn) liquid alloy was found to exhibit superconducting properties at low temperatures. In this work, the superconducting properties of the Ga-In-Sn liquid alloy (Ga:In:Sn = 62:25:13 by weight) and the Zn-doped samples have been studied. The results indicate that the Ga-In-Sn liquid alloy has the superconducting critical temperature (TC) of 6.28 K. With the addition of Zn, the TC is reduced to 6.06 K. Besides, at temperature higher than TC, a change from superconductivity to normal state appears, and with the addition of Zn element into the alloy, the magnetic susceptibility is improved. Therefore, based on the research of liquid metal’s superconductivity in this work, more physical properties and applied researches on liquid metal can be proposed in future, and more novel applications can be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. F. Beckers, J. Rinklebe, Cycling of mercury in the environment: sources, fate, and human health implications: A review. Crit. Rev. Environ. Sci. Technol. 47(9), 693 (2017)

    Article  CAS  Google Scholar 

  2. E. Snider et al., Room-temperature superconductivity in a carbonaceous sulfur hydride (Vol. 586, p. 373, 2020). Nature 588(7837), E18 (2020)

    Article  CAS  Google Scholar 

  3. K.S. Yun et al., A surface-tension driven micropump for low-voltage and low-power operations. J. Microelectromech. Syst. 11(5), 454 (2002)

    Article  CAS  Google Scholar 

  4. J. Ni et al., Electrochemically-actuated mercury valve for flow rate and direction control: design, characterization, and applications. J. Electroanal. Chem. 504(2), 166 (2001)

    Article  CAS  Google Scholar 

  5. W.J. Shen et al., Electrostatically actuated metal-droplet microswitches integrated on CMOS chip. J. Microelectromech. Syst. 15(4), 879 (2006)

    Article  CAS  Google Scholar 

  6. F.D. Manilevich et al., Studies of the hydrolysis of aluminum activated by additions of Ga-In-sn eutectic alloy, bismuth, or antimony. Mater. Sci. 55(4), 536 (2020)

    Article  CAS  Google Scholar 

  7. C.W. Chu et al., Epilogue: superconducting materials past, present and future. Physica C 514, 437 (2015)

    Article  CAS  Google Scholar 

  8. E.P. Romanov et al., Mechanism of formation, fine structure, and superconducting properties of high-temperature superconductors and superconducting composites. Phys. Met. Metallogr. 101(1), 33 (2006)

    Article  CAS  Google Scholar 

  9. D.S. Inosov et al., Normal-state spin dynamics and temperature-dependent spin-resonance energy in optimally doped BaFe1.85Co0.15As2. Nat. Phys. 6(3), 178 (2010)

    Article  CAS  Google Scholar 

  10. H.Y. Zhang, Toxic effect of Cd and Hg stress on pea seed. J. Anhui Agric. Sci. 36(31), 13539 (2008)

    CAS  Google Scholar 

  11. P. Sen, C.J. Kim, A fast liquid-metal droplet microswitch using EWOD-driven contact-line sliding. J. Microelectromech. Syst. 18(1), 174 (2009)

    Article  CAS  Google Scholar 

  12. P. Sen, C.J. Kim, A liquid-solid direct contact low-loss RF micro switch. J. Microelectromech. Syst. 18(5), 990 (2009)

    Article  CAS  Google Scholar 

  13. L.R. Bernstein, Mechanisms of therapeutic activity for gallium. Pharmacol. Rev. 50(4), 665 (1998)

    CAS  Google Scholar 

  14. K.E. Spells, The determination of the viscosity of liquid gallium over an extended nrange of temperature. Proc. Phys. Soc. 48(2), 299 (1936)

    Article  CAS  Google Scholar 

  15. V. Filippov et al., Viscosity of Ga-rich alloys in the Ga-In-Sn system. J. Alloy. Compd. 789, 66 (2019)

    Article  CAS  Google Scholar 

  16. N.F. Mott, The resistance of liquid metals. Proc. R. Soc. Lond. 146(857), 465 (1934)

    CAS  Google Scholar 

  17. J. Briggs Lyman, Gallium: thermal conductivity; supercooling; negative pressure. J. Chem. Phys. 26(4), 784 (1957)

    Article  Google Scholar 

  18. J. Pinson, Encyclopedia of the Electrochemistry of the Elements—Organic Sections, vol. XIV (Marcel Dekker, New York, 1980), p. 308

    Google Scholar 

  19. E.J. Lous, Formation of a schottky barrier between eutectic Ga, In and thiophene oligomers. J. Appl. Phys. 81(8), 3537 (1997)

    Article  CAS  Google Scholar 

  20. A. Du Pasquier et al., On the use of Ga-In eutectic and halogen light source for testing P3HT-PCBM organic solar cells. Sol. Energy Mater. Sol. Cells 90(12), 1828 (2006)

    Article  Google Scholar 

  21. S. Yu, M. Kaviany, Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles. J. Chem. Phys. 140(6), 064303 (2014)

    Article  Google Scholar 

  22. D.S. Evans et al., Thermal analysis of Ga-In-Sn system. Metal Sci. 12(9), 411 (1978)

    Article  CAS  Google Scholar 

  23. M.D. Dickey, Emerging applications of liquid metals featuring surface oxides. ACS Appl. Mater. Interfaces 6(21), 18369 (2014)

    Article  CAS  Google Scholar 

  24. T. Mochiku et al., Synthesis of InSn alloy superconductor below room temperature. Physica C 563, 33 (2019)

    Article  CAS  Google Scholar 

  25. L. Ren et al., Nanodroplets for stretchable superconducting circuits. Adv. Funct. Mater. 26(44), 8111 (2016)

    Article  CAS  Google Scholar 

  26. Y. Guo et al., Superconductivity modulated by quantum size effects. Science 5708, 1105130 (2004)

    Google Scholar 

  27. C. Granata, A. Vettoliere, Nano superconducting quantum interference device: a powerful tool for nanoscale investigations. Phys. Rep. 614, 1 (2016)

    Article  CAS  Google Scholar 

  28. Y. Zhang et al., Superconductivity modulated by quantum size effects. J. Chin. Electron. Microsc. Soc. 23(6), 599 (2004)

    CAS  Google Scholar 

  29. A.J. Downs, Chemistry of Aluminium, Gallium, Indium and Thallium (Springer, New York, 1992)

    Google Scholar 

  30. C. Oh et al., Influence of oxygen partial pressure in In-Sn-Ga-O thin-film transistors at a low temperature. J. Alloy. Compd. 805, 211 (2019)

    Article  CAS  Google Scholar 

  31. M.F. Merriam et al., Superconductivity in the indium-tin system. Phys. Rev. 131(2), 637 (1963)

    Article  CAS  Google Scholar 

  32. G. Knapp, M.F.J.P.R. Merriam, Superconductivity in the tin-gallium system. Phys. Rev. 140(2A), 528 (1965)

    Article  CAS  Google Scholar 

  33. R. Kubiak et al., Crystallization, decomposition and superconductivity of β-In3Sn. J. Less-Common Metals 65(2), 263 (1979)

    Article  CAS  Google Scholar 

  34. G. Hernandez et al., Superconductivity of In-Ga (fct). J. Low Temp. Phys. 46(1–2), 71 (1982)

    Article  CAS  Google Scholar 

  35. M.K. Rudziak, T. Wong, Development of a Nb3Sn conductor containing Ga and Mg dopants. IEEE Trans. Appl. Supercond. 11(1), 3580 (2001)

    Article  Google Scholar 

  36. V.Y. Verchenko et al., Endohedral cluster superconductors in the Mo-Ga-Sn system explored by the joint flux technique. Inorg. Chem. 58(22), 15552 (2019)

    Article  CAS  Google Scholar 

  37. T. Shishido et al., Chemical state and properties of the Nb5Sn2Ga grown by the self-component flux method using tin as a solvent. J. Alloy. Compd. 281(2), 196 (1998)

    Article  CAS  Google Scholar 

  38. A. Dobosz et al., Liquid metals in high-temperature cooling systems: the effect of Bi additions for the physicochemical properties of eutectic Ga-Sn-Zn. J. Chem. Eng. Data 64(2), 404 (2019)

    Article  CAS  Google Scholar 

  39. J. Lopez-Sanchez et al., Multiphase materials based on the Fe7.39Si1.55Cu1Nb3B6.6 alloy obtained by dry and wet high-energy ball milling processes. J. Alloys Compd. 864, 158136 (2021)

    Article  CAS  Google Scholar 

  40. Y. Plevachuk et al., Thermophysical properties of the liquid Ga–In–Sn eutectic alloy. J. Chem. Eng. Data 59(3), 757 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51973100), the National Key Research and Development Project of China (2019YFC0121402), and State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University (RZ2000003334).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by [T-TZ, G-XX, and G-TC]. The first draft of the manuscript was written by [T-TZ] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dong Chen or Yun-Ze Long.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Informed consent

All authors have informed consent.

Research involving human and animal participants

Research doesn’t involve Human Participants or Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 140 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, TT., Xie, GX., Cheng, GT. et al. Superconductivity of Ga-In-Sn liquid alloy. J Mater Sci: Mater Electron 33, 10021–10029 (2022). https://doi.org/10.1007/s10854-022-07993-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07993-5

Navigation