Skip to main content
Log in

Oxygen-vacancy-related dielectric relaxations and electrical properties in [Lix(BaSrCaMg)(1−x)/4]TiO3 high-entropy perovskite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High-entropy perovskite ceramics, [Lix(BaSrCaMg)(1−x)/4]TiO3 (x = 0.1, 0.15, 0.2, 0.3), were designed and successfully synthesized by solid-state method. The effects of Li contents on the phase formation, microstructures, and the origin of dielectric relaxation of all ceramics have been systematically investigated. The results show that all ceramics exhibit perovskite structure, and increasing Li content is conducive to grain growth and the formation of dense ceramics. XPS and EPR prove that oxygen vacancies increase with the increase of Li content. It is observed at room temperature that the increase of Li content not only contributes to the improved permittivity but also results in high-dielectric loss. Two sets of dielectric relaxations are observed in all ceramics. The lower temperature relaxation is shown to originate from the interfacial polarization, while the higher temperature relaxation is ascribed to double-ionized oxygen vacancies. The rapid increase of permittivity at higher temperatures and lower frequencies can be explained by space charge related to oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

We confirm that material described in the manuscript, including all relevant raw data, will be freely available to any researcher wishing to use them for non-commercial purposes, without breaching participant confidentiality. The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19, 349 (2016)

    Article  CAS  Google Scholar 

  2. W. Huo, H. Zhou, F. Fang, Z. Xie, J. Jiang, Mater. Des. 134, 226 (2017)

    Article  CAS  Google Scholar 

  3. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)

    Article  CAS  Google Scholar 

  4. S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, J. Luo, Scr. Mater. 142, 116 (2018)

    Article  CAS  Google Scholar 

  5. H. Xiang, Y. Xing, F. zhi Dai, H. Wang, L. Su, L. Miao, G. Zhang, Y. Wang, X. Qi, L. Yao, H. Wang, B. Zhao, J. Li, Y. Zhou, High-Entropy Ceramics: Present Status, Challenges, and a Look Forward (2021).

  6. M.R. Chellali, A. Sarkar, S.H. Nandam, S.S. Bhattacharya, B. Breitung, H. Hahn, L. Velasco, Scr. Mater. 166, 58 (2019)

    Article  CAS  Google Scholar 

  7. C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.P. Maria, Nat. Commun. 6, 1 (2015)

    Article  CAS  Google Scholar 

  8. A. Sarkar, R. Djenadic, N.J. Usharani, K.P. Sanghvi, V.S.K. Chakravadhanula, A.S. Gandhi, H. Hahn, S.S. Bhattacharya, J. Eur. Ceram. Soc. 37, 747 (2017)

    Article  CAS  Google Scholar 

  9. M. Biesuz, L. Spiridigliozzi, G. Dell’Agli, M. Bortolotti, V.M. Sglavo, J. Mater. Sci. 53, 8074 (2018)

    Article  CAS  Google Scholar 

  10. H. Zhao, Y. Cheng, N. Xu, Y. Li, F. Li, W. Ding, X. Lu, Solid State Ionics 181, 354 (2010)

    Article  CAS  Google Scholar 

  11. A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger, O. Clemens, H. Hahn, J. Eur. Ceram. Soc. 38, 2318 (2018)

    Article  CAS  Google Scholar 

  12. J. Yan, D. Wang, X. Zhang, J. Li, Q. Du, X. Liu, J. Zhang, X. Qi, J. Mater. Sci. 55, 6942 (2020)

    Article  CAS  Google Scholar 

  13. Y. Pu, Q. Zhang, R. Li, M. Chen, X. Du, S. Zhou, Appl. Phys. Lett. 115 (2019).

  14. K.D. Kreuer, Annu. Rev. Mater. Res. 33, 333 (2003)

    Article  CAS  Google Scholar 

  15. W. Pan, M. Cao, C. Diao, C. Tao, H. Hao, Z. Yao, Z. Yu, H. Liu, J. Mater. Sci. 54, 12401 (2019)

    Article  CAS  Google Scholar 

  16. X. Zhang, J. Zhang, Y. Zhou, Z. Yue, L. Li, J. Alloys Compd. 767, 424 (2018)

    Article  CAS  Google Scholar 

  17. N. Wang, M. Cao, Z. He, C. Diao, Q. Zhang, Y. Zhang, J. Dai, F. Zeng, H. Hao, Z. Yao, H. Liu, Ceram. Int. 42, 13593 (2016)

    Article  CAS  Google Scholar 

  18. Z. Wang, M. Cao, Z. Yao, Q. Zhang, Z. Song, W. Hu, Q. Xu, H. Hao, H. Liu, Z. Yu, J. Eur. Ceram. Soc. 34, 1755 (2014)

    Article  CAS  Google Scholar 

  19. Z. Wang, M. Cao, Z. Yao, Z. Song, G. Li, W. Hu, H. Hao, H. Liu, Ceram. Int. 40, 14127 (2014)

    Article  CAS  Google Scholar 

  20. Z. Wang, Z. Wang, M. Cao, Z. Yao, H. Hao, Z. Song, X. Huang, W. Hu, H. Liu, Ceram. Int. 41, 12945 (2015)

    Article  CAS  Google Scholar 

  21. W. Pan, M. Cao, H. Hao, Z. Yao, Z. Yu, H. Liu, J. Eur. Ceram. Soc. 40, 49 (2020)

    Article  CAS  Google Scholar 

  22. K.F. Wang, J.M. Liu, Z.F. Ren, Adv. Phys. 58, 321 (2009)

    Article  CAS  Google Scholar 

  23. W. Kleemann, P. Borisov, S. Bedanta, V.V. Shvartsman, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2228 (2010)

    Article  Google Scholar 

  24. A.A. Bokov, Z.G. Ye, J. Mater. Sci. 41, 31 (2006)

    Article  CAS  Google Scholar 

  25. D. Bérardan, S. Franger, D. Dragoe, A. K. Meena, N. Dragoe, Phys. Status Solidi. 10, 328 (2016).

  26. A. Sarkar, L. Velasco, D. Wang, Q. S. Wang, G. Talasila, L. de Biasi, C. Kubel, T. Brezesinski, S. S. Bhattacharya, H. Hahn, B. Breitung, Nat. Commun. 9 (2018).

  27. N. Osenciat, D. Bérardan, D. Dragoe, B. Léridon, S. Holé, A.K. Meena, S. Franger, N. Dragoe, J. Am. Ceram. Soc. 102, 6156 (2019)

    Article  CAS  Google Scholar 

  28. D. Bérardan, S. Franger, A.K. Meena, N. Dragoe, J. Mater. Chem. A 4, 9536 (2016)

    Article  CAS  Google Scholar 

  29. Z. Rak, C. M. Rost, M. Lim, P. Sarker, C. Toher, S. Curtarolo, J. P. Maria, D. W. Brenner, J. Appl. Phys. 120 (2016).

  30. S. Zhou, Y. Pu, Q. Zhang, R. Shi, X. Guo, W. Wang, J. Ji, T. Wei, T. Ouyang, Ceram. Int. 46, 7430 (2020)

    Article  CAS  Google Scholar 

  31. L. Tang, Z.M. Li, K.P. Chen, C.W. Li, X.W. Zhang, L.N. An, J. Am. Ceram. Soc. 104, 1953 (2021)

    Article  CAS  Google Scholar 

  32. J. Liu, G. Shao, D. Liu, K. Chen, K. Wang, B. Ma, K. Ren, Y. Wang, Mater. Today Adv. 8 (2020).

  33. S. Le, S. Zhu, X. Zhu, K. Sun, J. Power Sources 222, 367 (2013)

    Article  CAS  Google Scholar 

  34. S.W. Seo, M.W. Park, J.S. Lee, J. Nanosci. Nanotechnol. 16, 5320 (2016)

    Article  CAS  Google Scholar 

  35. P.L. Chen, I.W. Chen, J. Am. Ceram. Soc. 79, 1793 (1996)

    Article  CAS  Google Scholar 

  36. W. Li, Z. Liu, F. Zhang, Q. Sun, Y. Liu, Y. Li, Ceram. Int. 45, 11920 (2019)

    Article  CAS  Google Scholar 

  37. E. Olsson, X. Aparicio-Anglès, N.H. De Leeuw, Phys. Chem. Chem. Phys. 19, 13960 (2017)

    Article  CAS  Google Scholar 

  38. W. Dong, W. Hu, A. Berlie, K. Lau, H. Chen, R.L. Withers, Y. Liu, A.C.S. Appl, Mater. Interfaces 7, 25321 (2015)

    Article  CAS  Google Scholar 

  39. W. Tuichai, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, RSC Adv. 7, 95 (2017)

    Article  CAS  Google Scholar 

  40. D. A. Crandles, S. M. M. Yee, M. Savinov, D. Nuzhnyy, J. Petzelt, S. Kamba, J. Prokes, J. Appl. Phys. 119 (2016).

  41. T.F. Zhang, X.G. Tang, Q.X. Liu, Y.P. Jiang, X.X. Huang, J. Am. Ceram. Soc. 98, 551 (2015)

    Article  CAS  Google Scholar 

  42. T.F. Zhang, X.G. Tang, Q.X. Liu, Y.P. Jiang, X.X. Huang, J. Am. Ceram. Soc. 98, 551 (2014)

    Article  CAS  Google Scholar 

  43. X. Guo, Y. Pu, W. Wang, J. Ji, M. Yang, R. Shi, J. Li, J. Alloys Compd. 818, 152866 (2020).

  44. C. Yang, M.Y. Tse, X. Wei, J. Hao, J. Mater. Chem. C 5, 5170 (2017)

    Article  CAS  Google Scholar 

  45. X. Wang, X. Lu, C. Zhang, X. Wu, W. Cai, S. Peng, H. Bo, Y. Kan, F. Huang, J. Zhu, J. Appl. Phys. 107, 2 (2010)

    Google Scholar 

  46. C. C. Wang, C. M. Lei, G. J. Wang, X. H. Sun, T. Li, S. G. Huang, H. Wang, Y. D. Li, J. Appl. Phys. 113 (2013).

  47. S. Huang, K.P. Su, H.O. Wang, S.L. Yuan, D.X. Huo, Mater. Chem. Phys. 197, 11 (2017)

    Article  CAS  Google Scholar 

  48. G. Li, H. Liu, H. Hao, J. Liu, Z. Chen, X. Huang, M. Cao, Z. Yao, Ceram. Int. 42, 16782 (2016)

    Article  CAS  Google Scholar 

  49. X. F. Wang, X. M. Lu, C. Zhang, X. B. Wu, W. Cai, S. Peng, H. F. Bo, Y. Kan, F. Z. Huang, J. S. Zhu, J. Appl. Phys. 107 (2010).

  50. X. Sun, J. Deng, S. Liu, T. Yan, B. Peng, W. Jia, Z. Mei, H. Su, L. Fang, L. Liu, Appl. Phys. A 122, 1 (2016)

    Google Scholar 

  51. T. F. Zhang, X. G. Tang, Q. X. Liu, Y. P. Jiang, X. X. Huang, Q. F. Zhou, J. Phys. D 49 (2016).

  52. Z. Wang, M. Cao, Q. Zhang, H. Hao, Z. Yao, Z. Wang, Z. Song, Y. Zhang, W. Hu, H. Liu, J. Am. Ceram. Soc. 98, 476 (2015)

    Article  CAS  Google Scholar 

  53. X. Sun, J. Deng, L. Liu, S. Liu, D. Shi, L. Fang, B. Elouadi, Mater. Res. Bull. 73, 437 (2016)

    Article  CAS  Google Scholar 

  54. L.J. Liu, Y.M. Huang, Y.H. Li, M.X. Wu, L. Fang, C.Z. Hu, Y.Z. Wang, Physica B 407, 136 (2012)

    Article  CAS  Google Scholar 

  55. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Phys. Rev. B 49, 7868 (1994)

    Article  CAS  Google Scholar 

  56. Y. Wu, M.J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, G.Z. Cao, J. Appl. Phys. 89, 5647 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant (No. 51972048).

Funding

Funding was provided by National Natural Science Foundation of China (Grant Number 51972048).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by JZ, the first draft of the manuscript was written by JZ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiwei Qi.

Ethics declarations

Conflict of interest

We would like to declare on behalf of my co-authors that the work described is original research and has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed, and there is no conflict of interests during the submission of this manuscript. If accepted, this manuscript will not be published elsewhere in the same form, in English or in any other language, without the written consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, H., Gu, Y. et al. Oxygen-vacancy-related dielectric relaxations and electrical properties in [Lix(BaSrCaMg)(1−x)/4]TiO3 high-entropy perovskite ceramics. J Mater Sci: Mater Electron 33, 9918–9929 (2022). https://doi.org/10.1007/s10854-022-07982-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07982-8

Navigation