Skip to main content
Log in

Facile synthesis and characterization of ZnO NPs, ZnO/CdO and ZnO/SnO2 nanocomposites for photocatalytic degradation of Eosin Yellow and Direct Blue 15 under UV light irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present report, the synthesis of ZnO NPs, ZnO/CdO NCs, and ZnO/SnO2 NCs was successfully achieved by co-precipitation technique. The PXRD pattern revealed the peaks of ZnO NPs (hexagonal structure), CdO NPs (cubic structure), and SnO2 NPs (tetragonal structure) primarily confirmed that there were no impurities in the prepared materials. The FTIR studies confirm the characteristic band of the as-prepared samples. From UV–Vis DRS spectra, band energy gap values were found to be 3.38 eV for ZnO NPs, 3.18 eV for ZnO/CdO NCs, and 3.27 eV for ZnO/SnO2 NCs which were observed. PL spectrum confirms the slight variation in emission wavelength for composites compared to pure ZnO NPs. The morphological analysis of ZnO NPs, ZnO/CdO NCs, and ZnO/SnO2 NCs were investigated by SEM analysis. The photocatalytic activity of ZnO NPs, ZnO/CdO NCs, and ZnO/SnO2 NCs was analyzed by the degradation of Eosin Yellow (EY) and Direct Blue 15 (DB-15) under UV light irradiation. The result revealed that, the ZnO/CdO NCs found to have efficient degradation candidate materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. T. Munawar, S. Yasmeen, F. Hussain, K. Mahmood, A. Hussain, M. Asghar, F. Iqbal, Synthesis of novel heterostructure ZnO–CdO–CuO nanocomposite: Characterization and enhanced sunlight driven photocatalytic activity. Mater. Chem. Phys. 249, 122983 (2020)

    Article  CAS  Google Scholar 

  2. S. Jagadhesan, N.S. Kumar, V. Senthilnathan, T.S. Senthil, Sb doped ZnO nanostructures prepared via co-precipitation approach for the enhancement of MB dye degradation. Mater. Res. Exp. 5(2), 025040 (2018)

    Article  CAS  Google Scholar 

  3. T. Sumithra, C.L. Pearline, M.J. Abel, A. Pramothkumar, P.F.H. Inbaraj, J.J. Prince, Studies on structural and optical behavior of SnO2/CuMn2O4 nanocomposite developed via two-step approach for photocatalytic activity. Mater. Res. Exp. 6, 115047 (2019)

    Article  CAS  Google Scholar 

  4. L. Wang, Z. Li, J. Chen, Y. Huang, H. Zhang, H. Qiu, Enhanced photocatalytic degradation of methyl orange by porous graphene/ZnO nanocomposite. Environ. Pollut. 249, 801–811 (2019)

    Article  CAS  Google Scholar 

  5. R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, A. Stephen, ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater. Chem. Phys. 125, 277–280 (2011)

    Article  CAS  Google Scholar 

  6. S. Gautam, H. Agrawal, M. Thakur, A. Akbari, H. Sharda, R. Kaur, M. Amini, Metal oxides and metal organic frameworks for the photocatalytic degradation: a review. J. Environ. Chem. Eng. 8, 103726 (2020)

    Article  CAS  Google Scholar 

  7. H.M. Naeem, M. Muhyuddin, R. Rasheed, A. Noor, M.A. Akram, M.N. Aashiq, M.A. Basit, Simplistic wet-chemical coalescence of ZnO with Al2O3 and SnO2 for enhanced photocatalytic and electrochemical performance. J. Mater. Sci. 30, 14508–14518 (2019)

    Google Scholar 

  8. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  9. P. Pascariu, A. Airinei, N. Olaru, L. Olaru, V. Nica, Photocatalytic degradation of Rhodamine B dye using ZnO–SnO2 electrospun ceramic nanofibers. Ceram. Int. https://doi.org/10.1016/j.ceramint.2016.01.054.

  10. R. Saravanan, F. Gracia, M.M. Khan, V. Poornima, V.K. Gupta, V. Narayanan, A. Stephen, ZnO/CdO nanocomposites for textile effluent degradation and electrochemical detection. J. Mol. Liq. 209, 374–380 (2015)

    Article  CAS  Google Scholar 

  11. M.P. Ahmad, A.V. Rao, K.S. Babu, G.N. Rao, Particle size effect on the dielectric properties of ZnO nanoparticles. Mater. Chem. Phys. (2019). https://doi.org/10.1016/j.matchemphys.2018.12.002

    Article  Google Scholar 

  12. M. Ashokkumar, S. Muthukumaran, Microstructure, optical and FTIR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method. Opt. Mater. 37, 671–678 (2014)

    Article  CAS  Google Scholar 

  13. A.A. Manoharan, R. Chandramohan, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, H. Algarni, S. AlFaify, Transition metal (Mn) and rare earth (Nd) di-doped novel ZnO nanoparticles: a facile sol–gel synthesis and characterization. J. Mater. Sci. 29, 13077–13086 (2018).

  14. M.A. Moiz, A. Mumtaz, M. Salman, H. Mazhar, M.A. Basit, S.W. Husain, M. Ramzan, Enhancement of dye degradation by zinc oxide via transition-metal doping: a review. J. Electron. Mater. 50, 5106–5121 (2021)

    Article  CAS  Google Scholar 

  15. M. Hua, S. Zhang, B. Pan, Lu. Weiming Zhang, Q.Z. Lv, Heavy metal removal from water/wastewater by nanosized metal oxides. J. Hazard. Mater. 212, 317–331 (2012)

    Article  CAS  Google Scholar 

  16. S.M. Chergui, M. Guerrouache, B. Carbonnier, M.M. Chehimi, Polymermobilized nanoparticles. Colloids Surf. A 439, 43–68 (2013)

    Article  CAS  Google Scholar 

  17. Z. Khanam, N.A. Sadon, F. Adam, Synthesis and characterization of a novel paramagnetic polyaniline composite with uniformly distributed metallic nanoparticles sandwiched between polymer matrices. Synth. Met. 9, 192 (2014)

    Google Scholar 

  18. A. Hamrouni, H. Lachheba, A. Houa, Synthesis, characterization and photocatalytic activity of ZnO–SnO2 nanocomposites. Mater. Sci. Eng. B. 178, 1371–1379 (2013)

    Article  CAS  Google Scholar 

  19. E. Kowsari, S. Abdpour, Investigation performance of rodrod ZnO/CdO composites, synthesized in ionic liquid medium as photocatalytic for degradation of air pollutants (SO2 and NOX). Optik. Int. J. Light. Electron. Opt. https://doi.org/10.1016/j.ijleo.2016.09.084.

  20. H. Chen, L. Ding, W. Sun, Q. Jiang, J. Hu, J. Li, Synthesis and characterization of Ni doped SnO2 microspheres with enhanced visible-light photocatalytic activity. RSC Adv. https://doi.org/10.1039/C5RA10268E.

  21. R. Saravanan, M.M. Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J. Colloid. Interface Sci. 452, 126–133 (2015)

    Article  CAS  Google Scholar 

  22. S.S. Khan, Enhancement of visible light photocatalytic activity of CdO modified ZnO nanohybrid particles. J. Photochem. Photobiol B. (2014). https://doi.org/10.1016/j.jphotobiol.2014.11.001

    Article  Google Scholar 

  23. C.V. Reddy, B. Babu, J. Shim, Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnO hybrid nanocomposite. J. Phys. Chem. Solid. (2017). https://doi.org/10.1016/j.jpcs.2017.09.003

    Article  Google Scholar 

  24. M.B. Ali, F. Barka-Bouaifel, B. Sieber, H. Elhouichet, A. Addad, L. Boussekey, M. Férid, R. Boukherroub, Preparation and characterization of Ni-doped ZnO–SnO2 nanocomposites: application in photocatalysis. Superlattice Microst. (2016). https://doi.org/10.1016/j.spmi.2016.01.014

    Article  Google Scholar 

  25. Z. Yang, L. Lv, Y. Dai, Z. Xv, D. Qian, Synthesis of ZnO SnO2 composite oxides by CTAB-assisted co-precipitation and photocatalytic properties. Appl. Surf. Sci. 256, 2898–2902 (2010)

    Article  CAS  Google Scholar 

  26. J. Lin, Z. Luo, J. Liu, P. Li, Photocatalytic degradation of methylene blue in aqueous solution by using ZnO–SnO2 nanocomposites. Mater. Sci. Semicond. Process. 87, 24–31 (2018)

    Article  CAS  Google Scholar 

  27. Y. Wang, B. Li, Facile synthesis and photocatalytic activity of ZnO–CuO Nanocomposite. Superlattice Microst. 47, 615–623 (2010)

    Article  CAS  Google Scholar 

  28. E. Vivek, N. Senthilkumar, A. Pramothkumar, M. Vimalan, I.V. Potheher, Synthesis of flower-like copper oxide microstructure and its photocatalytic property. Phys. B 566, 96–102 (2019)

    Article  CAS  Google Scholar 

  29. R.N. Mariammal, K. Ramachandran, B. Renganathan, D. Sasikumar, On the enhancement of ethanol sensing by CuO modified SnO2 nanoparticles using fiber-optic sensor. Sens. Actuators B. 169, 199–207 (2012)

    Article  CAS  Google Scholar 

  30. D. Theyvaraju, S. Muthukumaran, Preparation, structural, photoluminescence and magnetic studies of Cu doped ZnO nanoparticles co-doped with Ni by sol–gel method. Physics E 74, 93–100 (2015)

    Article  CAS  Google Scholar 

  31. M. Arshad, A. Azama, S. Arham, S. Ahmed, S. Mollah, A.H. Naqvi, Effect of Co substitution on the structural and optical properties of ZnO nanoparticles synthesized by sol–gel route. J. Alloys Compd. 509, 8378–8381 (2011)

    Article  CAS  Google Scholar 

  32. R. Bomila, S. Suresh, S. Srinivasan, Synthesis, characterization and comparative studies of dual doped ZnO nanoparticles for photocatalytic applications. J. Mater. Sci. 30, 582–592 (2019)

    CAS  Google Scholar 

  33. E. Nandhakumar, P. Priya, R. Rajeswari, V. Aravindhan, A. Sasikumar, N. Senthilkumar, Studies on structural, optical and thermal properties of Fe3O4(NR)/ZrO2 CSNCs synthesized via green approach for photodegradation of dyes. Res. Chem. Inter. 45, 2657–2671 (2019)

    Article  CAS  Google Scholar 

  34. O.M. Ntwaeaborwa, S.J. Mofokeng, V. Kumar, R.E. Kroon, Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles, Spectrochim. Acta Part A 182, 42–49 (2017)

    Article  CAS  Google Scholar 

  35. S. Balamurugan, A.R. Balu, K. Usharani, M. Suganya, S. Anitha, D. Prabha, S. Ilangovan, Synthesis of CdO nanopowders by a simple soft chemical method and evaluation of their antimicrobial activities. Pac. Sci. Rev. A 3(18), 1–5 (2016)

    Google Scholar 

  36. P.G. Devi, A.S. Velu, Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method. J Theor. Appl. Phys. 10, 233–240 (2016)

    Article  Google Scholar 

  37. G. Somasundaram, J. Rajan, P. Sangaiya, R. Dilip, Hydrothermal synthesis of CdO nanoparticles for photocatalytic and antimicrobial activities. Results Mater. 4, 100044 (2019)

    Article  Google Scholar 

  38. R. Mani, K. Vivekanandan, K. Vallalperuman, Synthesis of pure and cobalt (Co) doped SnO2 nanoparticles and its structural, optical and photocatalytic properties. J. Mater. Sci. https://doi.org/10.1007/s10854-016-6067-z.

  39. J. Divya, A. Pramothkumar, S.J. Gnanamuthu, D.C.B. Victoria, P.C.J. Prabakar, Structural, optical, electrical and magnetic properties of Cu and Ni doped SnO2 nanoparticles prepared via Co-precipitation approach. Phys. B 588, 412169 (2020)

    Article  CAS  Google Scholar 

  40. N. Senthilkumar, E. Vivek, M. Shankar, M. Meena, M. Vimalan, I.V. Potheher, Synthesis of ZnO nanorods by one step microwave assisted hydrothermal route for electronic device applications. J. Mater. Sci. 29, 2927–2938 (2018)

    CAS  Google Scholar 

  41. R.M. Islam, S.M. Rahman, F.U. Farhad, J. Podder, Structural, optical and photocatalysis properties of sol–gel deposited Al-doped ZnO thinfilms. Surf. Interface. 16, 120–126 (2019)

    Article  CAS  Google Scholar 

  42. H. Wang, S. Baek, J. Lee, S. Lim, Photocatalytic activity of silver-loaded ZnO–SnO2 coupled catalysts. Chem. Eng. J. 146, 355–361 (2009)

    Article  CAS  Google Scholar 

  43. C.V. Reddy, B. Babu, J. Shim, Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnO hybrid nanocomposite. J. Phys. Chem. Solids (2017). https://doi.org/10.1016/j.jpcs.2017.09.003

    Article  Google Scholar 

  44. M.G. Nair, M. Nirmala, K. Rekha, A. Anukaliani, Structural, optical, photocatalytic, and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater. Lett. 65, 1797–1800 (2011)

    Article  CAS  Google Scholar 

  45. L. Saikia, D. Bhuyan, M. Saikia, B. Malakar, D.K. Dutta, P. Sengupta, Photocatalytic performance of ZnO nanomaterials for self-sensitized degradation of Malachite Green dye under solar light. Appl. Catal. A (2014). https://doi.org/10.1016/j.apcata.2014.10.053

    Article  Google Scholar 

  46. B. Allabergenov, U. Shaislamov, H. Shim, M.J. Lee, A. Matnazarov, B. Choi, Effective control over near band-edge emission in ZnO/CuO multilayered films. Opt. Mater. Exp. 7(2), 494 (2017)

    Article  CAS  Google Scholar 

  47. P.P. Sharmila, R.M. Sebastain, S. Sagar, E.M. Mohammed, N.J. Tharayil, Dielectric properties and conductivity of (ZnO/CdO) mixed oxide nanocomposite. Ferroelectrics (2015). https://doi.org/10.1080/00150193.2015.997177

    Article  Google Scholar 

  48. K. Asokan, J.Y. Park, S.-W. Choi, S.S. Kim, Nanocomposite ZnO–SnO2 nanofibers synthesized by an electrospinning method. Nanoscale Res. Lett. 5, 747–752 (2010)

    Article  CAS  Google Scholar 

  49. A. Hamrouni, N. Moussa, F. Parrino, A. Di Paola, A. Houas, L. Palmisano, Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 nanocomposites. J. Mol. Catal. A 390, 133–141 (2014)

    Article  CAS  Google Scholar 

  50. S. Sabbaghi, F. Doraghi, Photo-catalytic degradation of methylene blue by ZnO/SnO2 nanocomposite. J. Water. Environ. Nanotechnol. 1, 27–34 (2016)

    Google Scholar 

  51. R. Kumar, A. Umar, M.S. Chauhan, Y. Al-Hadeethi, ZnO–SnO2 nanocubes for fluorescence sensing and dye degradation applications. Cerams. Int. 47(5), 6201–6210 (2020)

    Article  CAS  Google Scholar 

  52. C.V. Reddy, B. Babu, J. Shim, Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnO hybrid nanocomposite. J. Phys. Chem. Sol. 112, 20–28 (2018)

    Article  CAS  Google Scholar 

  53. A.M. Mostafa, E.A. Mwafy, Synthesis of ZnO/CdO thin film for catalytic degradation of 4-nitrophenol. J. Mol. Struct. 1221(5), 128872 (2020)

    Article  CAS  Google Scholar 

  54. P. Margan, M. Haghighi, Sono-co-precipitation synthesis and physicochemical characterization of CdO-ZnO nano photocatalyst for removal of acid orange 7 from wastewater. Ultrason. Sonochem. 40, 323–332 (2018)

    Article  CAS  Google Scholar 

  55. S. Kumar, A.K. Ojha, B. Walkenfort, Cadmium oxide nanoparticles grown in situ on reduced graphene oxide for enhanced photocatalytic degradation of methylene blue dye under ultraviolet irradiation. J. Photochem. Photobiol. B 159, 111–119 (2016)

    Article  CAS  Google Scholar 

  56. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Photocatalytic and antibacterial activities of hydrothermally prepared CdO nanoparticles. J. Mater. Sci. 28(15), 11420–11429 (2017)

    CAS  Google Scholar 

  57. E.F.A. Zeid, I.A. Ibrahem, A.M. Ali, W.A. Mohamed, The effect of CdO content on the crystal structure, surface morphology, optical properties and photocatalytic efficiency of p-NiO/n-CdO nanocomposite. Result. Phys. 12, 562–570 (2019)

    Article  Google Scholar 

  58. S. Balamurugan, A.R. Balu, J. Srivind, K. Usharani, V. Narasimman, M. Suganya, V.S. Nagarethinam, CdOAl2O3, a composite material with enhanced photocatalytic activity against the degradation of MY dye. Vacuum 159, 9–16 (2019)

    Article  CAS  Google Scholar 

  59. K. Kannan, D. Sivasubramanian, P. Seetharaman, Sivaperumal, S, Structural and biological properties with enhanced photocatalytic behaviour of CdO-MgO nanocomposite by microwave-assisted method. Optik 204, 164221 (2020)

    Article  CAS  Google Scholar 

  60. M. Rakibuddin, R. Ananthakrishnan, Fabrication of graphene aerosol hybridized coordination polymer derived CdO/SnO2 hetero nanostructure with improved visible light photocatalytic performance. Solar Ener. Mater. Solar Cells 162, 62–71 (2017)

    Article  CAS  Google Scholar 

  61. C. Karunakaran, A. Vijayabalan, Photocatalytic activities of CdO-Fe2O3, CdO-CuFe2O4 and CdO-ZnFe2O4 nanocomposites. In. Mater. Sci. For. 764, 206–218 (2013)

    Google Scholar 

  62. K. Elumalai, S. Velmurugan, S. Ravi, V. Kathiravan, G.A. Raj, Bio-approach: plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity. Adv. Pow. Technol. 26(6), 1639–1651 (2015)

    Article  CAS  Google Scholar 

  63. N. Sharma, R. Jha, S. Baghel, D. Sharma, Study on photocatalyst Zinc Oxide annealed at different temperatures for photodegradation of Eosin Y dye. J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.10.194

    Article  Google Scholar 

  64. S.N.K. Abad, M. Mozammel, J. Moghaddam, A. Mostafaei, M. Chmielus, Highly porous, flexible and robust cellulose acetate/Au/ZnO as a hybrid photocatalyst. Appl. Surf. Sci. 526, 146237 (2020)

    Article  CAS  Google Scholar 

  65. L. Arun, C. Karthikeyan, D. Philip, C. Unni, Optical, magnetic, electrical, and chemo-catalytic properties of bio-synthesized CuO/NiO nanocomposites. J. Phys. Chem. Solid. (2019). https://doi.org/10.1016/j.jpcs.2019.109155

    Article  Google Scholar 

  66. R. Ebrahimi, K. Hossienzadeh, A. Maleki, R. Ghanbari, R. Rezaee, M. Safari, S.H. Puttaiah, Effects of doping zinc oxide nanoparticles with transition metals (Ag, Cu, Mn) on photocatalytic degradation of Direct Blue 15 dye under UV and visible light irradiation. J. Environ. Health Sci. Eng. 17(1), 479–492 (2019)

    Article  CAS  Google Scholar 

  67. R. Lamba, A. Umar, S.K. Mehta, S.K. Kansal, CeO2ZnO hexagonal nanodisks: Efficient material for the degradation of direct blue 15 dye and its simulated dye bath effluent under solar light. J. Alloys Compd. 620, 67–73 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SJ [First author], AP [contributing in manuscript preparation], and PM [corresponding author and research supervisor].

Corresponding author

Correspondence to P. Mani.

Ethics declarations

Conflict of interest

All the authors are do not have any potential conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayasankari, S., Pramothkumar, A. & Mani, P. Facile synthesis and characterization of ZnO NPs, ZnO/CdO and ZnO/SnO2 nanocomposites for photocatalytic degradation of Eosin Yellow and Direct Blue 15 under UV light irradiation. J Mater Sci: Mater Electron 33, 9858–9874 (2022). https://doi.org/10.1007/s10854-022-07968-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07968-6

Navigation