Skip to main content

GaSb/Mn multilayers structures fabricated by DC magnetron sputtering: Interface feature and nano-scale surface topography


The multilayer structure is a well-studied architecture for electronic and optoelectronic applications and more recently in spintronic devices. In this work, we present the structural, morphological, topographical, and magnetic properties of GaSb/Mn multilayers deposited via DC magnetron sputtering at room temperature and 423 K. Raman measurements evidence the formation of p-type GaSb layers with a contribution of electrons in the multilayer due to the neighboring Mn layer and the formation of effective interlayers. HR-SEM measurements show the multilayer architecture with columnar microstructure in the layer’s formation, while AFM micrographs allowed observing the changes in grain sizes (between 129 and 187 nm) and roughness (between 1.47 nm and 6.28 nm) with increasing number of layers. The formation of the interlayers between the GaSb and Mn layer was assayed in-depth spectroscopically via Rutherford backscattering studies. These interlayers were associated with diffusion processes during deposition and contributed to the magnetic behavior of multilayers. A ferromagnetic-like behavior was observed in the multilayers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. H.P. Quiroz, M. Manso-Silván, A. Dussan, P. Carlos Busó-Rogero, F.M. Prieto, TiO2 and Co multilayer thin films via DC magnetron sputtering at room temperature: Interface properties. Mater. Charact. 163, 110293 (2020).

    CAS  Article  Google Scholar 

  2. B. Liu, Yu. Xiangjiang, X. Jiang, Yi. Qiao, Li. You, Y. Wang, F. Ye, Effect of deposition substrates on surface topography, interface roughness and phase transformation of the Al/Ni multilayers Appl. Surf. Sci. 546, 149098 (2021).

    CAS  Article  Google Scholar 

  3. A. Biswas, N. Abharana, S.N. Jha, D. Bhattacharyya, Non-destructive elemental depth profiling of Ni/Ti multilayers by GIXRF technique. Appl. Surf. Sci. 542, 148733 (2021).

    CAS  Article  Google Scholar 

  4. Z. Yuan, Y. Han, S. Zang, J. Chen, G. He, Y. Chai, Z. Yang, Fu. Qinqin, Analysis of the mechanical properties of TiN/Ti multilayer coatings using indentation under a broad load range. Ceram. Int. 47, 10796–10808 (2021).

    CAS  Article  Google Scholar 

  5. G. Beainy, T. Cerba, F. Bassani, M. Martin, T. Baron, J.-P. Barnes, Suppression of self-organized surface nanopatterning on GaSb/InAs multilayers induced by low energy oxygen ion bombardment by using simultaneously sample rotation and oxygen flooding. Appl. Surf. Sci. 441, 218–222 (2018).

    CAS  Article  Google Scholar 

  6. D. Datta, S.R. Bhattacharyya, T.K. Chini, M.K. Sanyal, Evolution of surface morphology of ion sputtered GaAs (100). Nucl. Instrum. Methods Phys. Res. B. 193, 596–602 (2002).

    CAS  Article  Google Scholar 

  7. A. Wellner, R.E. Palmer, J.G. Zheng, C.J. Kiely, K.W. Kolasinski, Mechanisms of visible photoluminescence from nanoscale silicon cones. J. Appl. Phys. 91(5), 3294–3298 (2002).

    CAS  Article  Google Scholar 

  8. K. Isobe, R. Okino, K. Hanamura, Spectral absorptance of a metal-semiconductor-metal thin-multilayer structured thermophotovoltaic cell. Opt. Express 28, 40099–40111 (2020).

    CAS  Article  Google Scholar 

  9. J.-S. Liu, Y. Zhu, P.S. Goley, M.K. Hudait, Heterointerface engineering of broken-gap InAs/GaSb multilayer structures. ACS Appl. Mater. Interfaces 7, 2512–2517 (2015).

    CAS  Article  Google Scholar 

  10. Z. Li, Lu. Yegang, M. Wang, X. Shen, X. Zhang, S. Song, Z. Song, Controllable multilevel resistance state of superlattice-like GaSb/Ge2Te films for ultralong retention phase-change memory. J. Non-Cryst. Solids 481, 110–115 (2018).

    CAS  Article  Google Scholar 

  11. K.S.A. Motlan, E.M. Butcher, T.L. Goldys, Tansley, Multilayer GaSb/GaAs self-assembled quantum dots grown by metalorganic chemical vapor deposition. Mater. Chem. Phys. 81, 8–10 (2003).

    CAS  Article  Google Scholar 

  12. J.A. Calderón, A. Dussan, Thermal annealing effect on GaSb thin films deposited on Si (001) for assembly of GaSb/Mn multilayer systems at room temperature. J. Electron. Mater. 50(11), 6403–6413 (2021).

    CAS  Article  Google Scholar 

  13. F.Z. Meharrar, A. Belfar, I. Aouad, E. Giudicelli, Y. Cuminal, H. Aït-kaci, Analysis of the GaSb-p+/GaSb-p/GaSb-n+/GaSb-n structure performances at room temperature, for thermo-photovoltaic applications. Opt. 175, 138–147 (2018).

    CAS  Article  Google Scholar 

  14. E.A. Chusovitin, D.L. Goroshko, S.A. Dotsenko, S.V. Chusovitina, A.V. Shevlyagin, N.G. Galkin, A.K. Gutakovskii, GaSb nanocrystals grown by solid phase epitaxy and embedded into monocrystalline silicon. Scripta Mater. 136, 83–86 (2017).

    CAS  Article  Google Scholar 

  15. K.S.A. Motlan, E.M. Butcher, T.L.T. Goldys, Multilayer GaSb/GaAs self-assembled quantum dots grown by metalorganic chemical vapor deposition. Mater. Chem. Phys. 81, 8–10 (2003).

    CAS  Article  Google Scholar 

  16. C. Guo, Y. Sun, Z. Jia, Z. Jiang, Y. Lv, H. Hao, Xi. Han et al., Visible-extended mid-infrared wide spectrum detector based on InAs/GaSb type superlattices (T2SL). Infrared Phys. Technol. 89, 147–153 (2018).

    CAS  Article  Google Scholar 

  17. T.D. Golding, J.A. Dura, W.C. Wang, J.T. Zborowski, A. Vigliante, H.C. Chen, J.R. Meyer, Molecular beam epitaxial growth of Sb/GaSb multilayer structures: potential application as a narrow bandgap system. J. Cryst. Growth 127, 777–782 (1993).

    CAS  Article  Google Scholar 

  18. A.V. Kudrin, V.P. Lesnikov, D.A. Pavlov, Yu.V. Usov, Yu.A. Danilov, M.V. Dorokhin, Formation of epitaxial p-i-n structures on the basis of (In, Fe)Sb and (Ga, Fe)Sb diluted magnetic semiconductors layers. J. Magn. Magn. Mater. 487, 165321 (2019).

    CAS  Article  Google Scholar 

  19. M. Mayer, Application of accelerators in research and industry, Pts 1 and 2. AIP Conf. Proc. 475, 541–544 (1999).

    CAS  Article  Google Scholar 

  20. J. Maslar, W. Hurst, C.A. Wang, Raman spectroscopy of n-type and p-type GaSb with multiple excitation wavelengths. Appl. Spectrosc. 61, 1093–1102 (2007).

    CAS  Article  Google Scholar 

  21. J. Maslar, W. Hurst, C.A. Wang, Spectroscopic determination of electron concentration in n-type GaSb. J. Appl. Phys. 104, 103521 (2008).

    CAS  Article  Google Scholar 

  22. , C. E. M. Campos, P. S. Pizani, Morphological studies of annealed GaAs and GaSb surfaces by micro-Raman spectroscopy and EDX microanalysis. Appl. Surf. Sci. 200, 111–116 (2002).

    Article  Google Scholar 

  23. Y.L. Casallas-Moreno, M. Ramírez-López, G. Villa-Martínez, A.L. Martínez-López, M. Macias et al., Effect of the Sb content and the n- and p-GaSb (100) substrates on the physical and chemical properties of InSbxAs1-x alloys for mid-infrared applications: Analysis of surface, bulk and interface. J. Alloys Compd. 861, 157936 (2021).

    CAS  Article  Google Scholar 

  24. A. Lahiri, N. Borisenko, M. Olschewski, R. Gustus, J. Zahlbach, F. Endres, Electroless deposition of III–V semiconductor nanostructures from ionic liquids at room temperature. Angew. Chemie - Int. Ed. 54(11870–11874), 2015 (2015).

    CAS  Article  Google Scholar 

  25. K. Sato, E. Saitoh, Spintronics for Next Generation Innovative Devices (John Wiley & Sons Ltd, West Sussex, United Kingdom, 2015)

    Book  Google Scholar 

  26. B.C. Johnson, J.C. McCallum, M.J. Aziz, Handbook of Crystal Growth: Thin Films and Epitaxy (Elsevier North-Holland, Boston, 2015)

    Google Scholar 

  27. José M. Albella (2003) Láminas Delgadas y Recubrimientos, Preparación, propiedades y aplicaciones, Consejo Superior de Investigaciones Científicas, Spain, Madrid.

  28. K. Wasa, M. Kitabatake, H. Adachi, Thin Film Materials Technology: Sputtering of Compound Materials (Springer Verlag, New York, 2004)

    Google Scholar 

  29. S.N. Sofronova, N.V. Kazak, E.V. Eremin, E.M. Moshkina, A.V. Chernyshov, A.F. Bovina, J. Alloys Comp. 864, 158200 (2021).

    CAS  Article  Google Scholar 

  30. A.G. Kolesnikov, M.E. Stebliy, A.V. Davydenko, A.G. Kozlov, I.S. Osmushko, V.V. Korochentsev et al., Magnetic properties and the interfacial Dzyaloshinskii-Moriya interaction in exchange biased Pt/Co/NixOy films. Appl. Surf. Sci. 543, 148720 (2021).

    CAS  Article  Google Scholar 

Download references


This work was supported by Universidad Nacional de Colombia. Jorge A. Calderón, scholarship of Doctorados Colciencias Conv. 785—2017. We acknowledge the service from the MiNa Laboratory at IMN, and funding from CM, MINECO and EU (FEDER, FSE).


This article was funded by Universidad Nacional de Colombia,MinCiencias,Con. 785,Jorge A. Calderón,MiNa Laboratory at IMN,CM,Miguel Manso Silván,MINECO,Miguel Manso Silván,EU (FEDER,Miguel Manso Silván,FSE), and Miguel Manso Silván.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Heiddy P. Quiroz.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Calderón, J.A., Quiroz, H.P., Manso-Silván, M. et al. GaSb/Mn multilayers structures fabricated by DC magnetron sputtering: Interface feature and nano-scale surface topography. J Mater Sci: Mater Electron 33, 8159–8170 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: