H.P. Quiroz, M. Manso-Silván, A. Dussan, P. Carlos Busó-Rogero, F.M. Prieto, TiO2 and Co multilayer thin films via DC magnetron sputtering at room temperature: Interface properties. Mater. Charact. 163, 110293 (2020). https://doi.org/10.1016/j.matchar.2020.110293
CAS
Article
Google Scholar
B. Liu, Yu. Xiangjiang, X. Jiang, Yi. Qiao, Li. You, Y. Wang, F. Ye, Effect of deposition substrates on surface topography, interface roughness and phase transformation of the Al/Ni multilayers Appl. Surf. Sci. 546, 149098 (2021). https://doi.org/10.1016/j.apsusc.2021.149098
CAS
Article
Google Scholar
A. Biswas, N. Abharana, S.N. Jha, D. Bhattacharyya, Non-destructive elemental depth profiling of Ni/Ti multilayers by GIXRF technique. Appl. Surf. Sci. 542, 148733 (2021). https://doi.org/10.1016/j.apsusc.2020.148733
CAS
Article
Google Scholar
Z. Yuan, Y. Han, S. Zang, J. Chen, G. He, Y. Chai, Z. Yang, Fu. Qinqin, Analysis of the mechanical properties of TiN/Ti multilayer coatings using indentation under a broad load range. Ceram. Int. 47, 10796–10808 (2021). https://doi.org/10.1016/j.ceramint.2020.12.196
CAS
Article
Google Scholar
G. Beainy, T. Cerba, F. Bassani, M. Martin, T. Baron, J.-P. Barnes, Suppression of self-organized surface nanopatterning on GaSb/InAs multilayers induced by low energy oxygen ion bombardment by using simultaneously sample rotation and oxygen flooding. Appl. Surf. Sci. 441, 218–222 (2018). https://doi.org/10.1016/j.apsusc.2018.02.009
CAS
Article
Google Scholar
D. Datta, S.R. Bhattacharyya, T.K. Chini, M.K. Sanyal, Evolution of surface morphology of ion sputtered GaAs (100). Nucl. Instrum. Methods Phys. Res. B. 193, 596–602 (2002). https://doi.org/10.1016/S0168-583X(02)00860-1
CAS
Article
Google Scholar
A. Wellner, R.E. Palmer, J.G. Zheng, C.J. Kiely, K.W. Kolasinski, Mechanisms of visible photoluminescence from nanoscale silicon cones. J. Appl. Phys. 91(5), 3294–3298 (2002). https://doi.org/10.1063/1.1448394
CAS
Article
Google Scholar
K. Isobe, R. Okino, K. Hanamura, Spectral absorptance of a metal-semiconductor-metal thin-multilayer structured thermophotovoltaic cell. Opt. Express 28, 40099–40111 (2020). https://doi.org/10.1364/OE.410828
CAS
Article
Google Scholar
J.-S. Liu, Y. Zhu, P.S. Goley, M.K. Hudait, Heterointerface engineering of broken-gap InAs/GaSb multilayer structures. ACS Appl. Mater. Interfaces 7, 2512–2517 (2015). https://doi.org/10.1021/am507410b
CAS
Article
Google Scholar
Z. Li, Lu. Yegang, M. Wang, X. Shen, X. Zhang, S. Song, Z. Song, Controllable multilevel resistance state of superlattice-like GaSb/Ge2Te films for ultralong retention phase-change memory. J. Non-Cryst. Solids 481, 110–115 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.10.030
CAS
Article
Google Scholar
K.S.A. Motlan, E.M. Butcher, T.L. Goldys, Tansley, Multilayer GaSb/GaAs self-assembled quantum dots grown by metalorganic chemical vapor deposition. Mater. Chem. Phys. 81, 8–10 (2003). https://doi.org/10.1016/s0254-0584(03)00163-9
CAS
Article
Google Scholar
J.A. Calderón, A. Dussan, Thermal annealing effect on GaSb thin films deposited on Si (001) for assembly of GaSb/Mn multilayer systems at room temperature. J. Electron. Mater. 50(11), 6403–6413 (2021). https://doi.org/10.1007/s11664-021-09161-7
CAS
Article
Google Scholar
F.Z. Meharrar, A. Belfar, I. Aouad, E. Giudicelli, Y. Cuminal, H. Aït-kaci, Analysis of the GaSb-p+/GaSb-p/GaSb-n+/GaSb-n structure performances at room temperature, for thermo-photovoltaic applications. Opt. 175, 138–147 (2018). https://doi.org/10.1016/j.ijleo.2018.08.125
CAS
Article
Google Scholar
E.A. Chusovitin, D.L. Goroshko, S.A. Dotsenko, S.V. Chusovitina, A.V. Shevlyagin, N.G. Galkin, A.K. Gutakovskii, GaSb nanocrystals grown by solid phase epitaxy and embedded into monocrystalline silicon. Scripta Mater. 136, 83–86 (2017). https://doi.org/10.1016/j.scriptamat.2017.04.004
CAS
Article
Google Scholar
K.S.A. Motlan, E.M. Butcher, T.L.T. Goldys, Multilayer GaSb/GaAs self-assembled quantum dots grown by metalorganic chemical vapor deposition. Mater. Chem. Phys. 81, 8–10 (2003). https://doi.org/10.1016/S0254-0584(03)00163-9
CAS
Article
Google Scholar
C. Guo, Y. Sun, Z. Jia, Z. Jiang, Y. Lv, H. Hao, Xi. Han et al., Visible-extended mid-infrared wide spectrum detector based on InAs/GaSb type superlattices (T2SL). Infrared Phys. Technol. 89, 147–153 (2018). https://doi.org/10.1016/j.infrared.2017.12.020
CAS
Article
Google Scholar
T.D. Golding, J.A. Dura, W.C. Wang, J.T. Zborowski, A. Vigliante, H.C. Chen, J.R. Meyer, Molecular beam epitaxial growth of Sb/GaSb multilayer structures: potential application as a narrow bandgap system. J. Cryst. Growth 127, 777–782 (1993). https://doi.org/10.1016/0022-0248(93)90731-B
CAS
Article
Google Scholar
A.V. Kudrin, V.P. Lesnikov, D.A. Pavlov, Yu.V. Usov, Yu.A. Danilov, M.V. Dorokhin, Formation of epitaxial p-i-n structures on the basis of (In, Fe)Sb and (Ga, Fe)Sb diluted magnetic semiconductors layers. J. Magn. Magn. Mater. 487, 165321 (2019). https://doi.org/10.1016/j.jmmm.2019.165321
CAS
Article
Google Scholar
M. Mayer, Application of accelerators in research and industry, Pts 1 and 2. AIP Conf. Proc. 475, 541–544 (1999). https://doi.org/10.1063/1.59188
CAS
Article
Google Scholar
J. Maslar, W. Hurst, C.A. Wang, Raman spectroscopy of n-type and p-type GaSb with multiple excitation wavelengths. Appl. Spectrosc. 61, 1093–1102 (2007). https://doi.org/10.1366/000370207782217789
CAS
Article
Google Scholar
J. Maslar, W. Hurst, C.A. Wang, Spectroscopic determination of electron concentration in n-type GaSb. J. Appl. Phys. 104, 103521 (2008). https://doi.org/10.1063/1.3021159
CAS
Article
Google Scholar
, C. E. M. Campos, P. S. Pizani, Morphological studies of annealed GaAs and GaSb surfaces by micro-Raman spectroscopy and EDX microanalysis. Appl. Surf. Sci. 200, 111–116 (2002). https://doi.org/10.1016/s0169-4332(02)00617-7
Article
Google Scholar
Y.L. Casallas-Moreno, M. Ramírez-López, G. Villa-Martínez, A.L. Martínez-López, M. Macias et al., Effect of the Sb content and the n- and p-GaSb (100) substrates on the physical and chemical properties of InSbxAs1-x alloys for mid-infrared applications: Analysis of surface, bulk and interface. J. Alloys Compd. 861, 157936 (2021). https://doi.org/10.1016/j.jallcom.2020.157936
CAS
Article
Google Scholar
A. Lahiri, N. Borisenko, M. Olschewski, R. Gustus, J. Zahlbach, F. Endres, Electroless deposition of III–V semiconductor nanostructures from ionic liquids at room temperature. Angew. Chemie - Int. Ed. 54(11870–11874), 2015 (2015). https://doi.org/10.1002/anie.201504764
CAS
Article
Google Scholar
K. Sato, E. Saitoh, Spintronics for Next Generation Innovative Devices (John Wiley & Sons Ltd, West Sussex, United Kingdom, 2015)
Book
Google Scholar
B.C. Johnson, J.C. McCallum, M.J. Aziz, Handbook of Crystal Growth: Thin Films and Epitaxy (Elsevier North-Holland, Boston, 2015)
Google Scholar
José M. Albella (2003) Láminas Delgadas y Recubrimientos, Preparación, propiedades y aplicaciones, Consejo Superior de Investigaciones Científicas, Spain, Madrid.
K. Wasa, M. Kitabatake, H. Adachi, Thin Film Materials Technology: Sputtering of Compound Materials (Springer Verlag, New York, 2004)
Google Scholar
S.N. Sofronova, N.V. Kazak, E.V. Eremin, E.M. Moshkina, A.V. Chernyshov, A.F. Bovina, J. Alloys Comp. 864, 158200 (2021). https://doi.org/10.1016/j.jallcom.2020.158200
CAS
Article
Google Scholar
A.G. Kolesnikov, M.E. Stebliy, A.V. Davydenko, A.G. Kozlov, I.S. Osmushko, V.V. Korochentsev et al., Magnetic properties and the interfacial Dzyaloshinskii-Moriya interaction in exchange biased Pt/Co/NixOy films. Appl. Surf. Sci. 543, 148720 (2021). https://doi.org/10.1016/j.apsusc.2020.148720
CAS
Article
Google Scholar