Skip to main content
Log in

Effect of ‘Zn’ substitution on structural, morphological, magnetic and optical properties of Co–Zn ferrite nanoparticles for ferrofluid application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Co1−xZnxFe2O4 (Co–Zn) ferrite nanoparticles with x varying from 0.0 to 0.4 have been manufactured by facile chemical co-precipitation method and characterized using structural, morphological, compositional, magnetic and optical properties. XRD pattern revealed that the as-prepared samples have a single-phase spinel structure and good crystallinity which indicate that zinc substitution leads to an increase in both lattice constant and interplanar spacing. FTIR spectra indicate that organic phase annihilation and the spinel phase formation were observed for the prepared sample. The morphological study by SEM shows that the particles have almost spherical grains with narrow size distribution which are appropriate to attain colloidal stability in ferrofluid. The magnetic characterization was studied by VSM which shows that the high cobalt content samples with x < 0.3 show hysteresis, while samples with lower cobalt content show superparamagnetic nature. The saturation magnetization of Zn-substituted cobalt ferrite nanoparticles decreases appreciably with an increase in Zn concentration shown under the hysteresis curve. Low magnetic field ac susceptibility measurement shows a decrease in Curie temperature from 466 to 237 °C with an increase in zinc content of cobalt ferrite. Thus, by adjusting the zinc and cobalt content in an appropriate proportion, sample with superparamagnetic behaviour with required saturation magnetization and desired Curie temperature can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. L. Jiaolong, L. Zhang, D. Zang, H. Wu, A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Func. Mater. 31(45), 2105018 (2021). https://doi.org/10.1002/adfm.202105018

    Article  CAS  Google Scholar 

  2. L. Jiaolong, L. Zhang, H. Wu, Electromagnetic wave absorbing performance of carbons, carbides, oxides, ferrites and sulfides: review and perspective. J. Phys. D Appl. Phys. 54, 20 (2021). https://doi.org/10.1088/1361-6463/abe26d

    Article  Google Scholar 

  3. M. Zhu, X. Yan, H. Xu, Y. Xu, L. Kong, Highly conductive and flexible bilayered MXene/cellulose paper sheet for efficient electromagnetic interference shielding applications. Ceram. Int. 47(12), 17234–17244 (2021). https://doi.org/10.1016/j.ceramint.2021.03.034

    Article  CAS  Google Scholar 

  4. M. Zhu, X. Yan, H. Xu, Y. Xu, L. Kong, Ultralight, compressible, and anisotropic MXene@Wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 182, 806–814 (2021). https://doi.org/10.1016/j.carbon.2021.06.054

    Article  CAS  Google Scholar 

  5. Z. Karimi, Y. Mohammadifar, H. Shokrollahi, S. Asl, G. Yousefi, L. Karimi, Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation. J. Magn. Magn. Mater. 361, 150–156 (2014)

    Article  CAS  Google Scholar 

  6. Z. Ding, W. Wang, S. Wu, J. Liu, Synthesis and characterization of Co–Zn ferrite nanoparticles by hydrothermal method: a comparative study. IEEE Trans. Magn. 51(11), 2004104 (2015)

    Google Scholar 

  7. Y.H. Hou, Y.J. Zhao, Z.W. Liu, H.Y. Yu, X.C. Zhong, W.Q. Qiu, D.C. Zeng, L.S. Wen, Structural, electronic and magnetic properties of partially inverse spinel CoFe2O4: a first-principles study. J. Phys. D Appl. Phys. 43, 445003–445009 (2010)

    Article  Google Scholar 

  8. H. Choi, S. Lee, T. Kouh, S. Kim, C. Kim, Synthesis and characterization of Co-Zn ferrite NPs for application to magnetic hyperthermia. J. Korean Phys. Soc. 70(1), 89–92 (2017)

    Article  CAS  Google Scholar 

  9. S.G. Fonseca, L.S. Neiva, M.A. Bonifácio, P.R. Santos, U.C. Silva, J.B. Oliveira, Tunable magnetic and electrical properties of cobalt and zinc ferrites Co1-XZnXFe2O4 synthesized by combustion route. Mater. Res. 21(3), 1–9 (2018)

    Article  Google Scholar 

  10. C. Vinuthna, D. Ravinder, R. Raju, Characterization of Co1-XZnxFe2O4 nano spinal ferrites prepared by citrate precursor method. Int. J. Eng. Res. Appl. 3(6), 654–660 (2013)

    Google Scholar 

  11. J. Feng, R. Xiong, Y. Liu, F. Su, X. Zhang, Preparation of cobalt substituted zinc ferrite nanopowders via autocombustion route: an investigation to their structural and magnetic properties. J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-9950-y

    Article  Google Scholar 

  12. X. Zhao, A. Sun, W. Zhang, LYu.Z. Zuo, N. Suo, X. Pan, Y. Han, Magnetic transformation of Zn-substituted Ni–Co ferrite NPs. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-02557-6

    Article  Google Scholar 

  13. A. Azouaoui, M. Haoua, S. Salmi, N. Benzakour, A. Hourmatallah, K. Bouslykhane, Structural and magnetic properties of Co-Zn ferrites: density functional theory calculations and high-temperature series expansions. Comput. Condens. Matter. (2019). https://doi.org/10.1016/j.cocom.2019.e00454

    Article  Google Scholar 

  14. D.D. Andhare, S.R. Patade, S.J. Kounsalye, K.M. Jadhav, Effect of Zn doping on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via Co-precipitation method. Physica B 583, 412051–412056 (2020)

    Article  CAS  Google Scholar 

  15. K. Zipare, S. Bandgar, G. Shahane, Effect of Dy-substitution on structural and magnetic properties of Mn-Zn ferrite NPs. J. Rare Earths 36, 86–94 (2018)

    Article  CAS  Google Scholar 

  16. S. Mansour, A. Dawood, M. Abdo, Enhanced magnetic and dielectric properties of doped Co–Zn ferrite NPs by virtue of Cr3+ role. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-02073-7

    Article  Google Scholar 

  17. M. Hashim, M. Raghasudha, S. Meena, J. Shah, S. Shirsath, S. Kumar, D. Ravinder, P. Bhatt, A. Alimuddin, R. Kumar, R. Kotnala, Influence of rare earth ion doping (Ce and Dy) on electrical and magnetic properties of cobalt ferrites. J. Magn. Magn. Mater. (2017). https://doi.org/10.1016/j.jmmm.2017.10.023

    Article  Google Scholar 

  18. X. Huang, J. Zhang, W. Wang, T. Sang, B. Song, H. Zhu, W. Rao, C. Wong, Effect of pH value on electromagnetic loss properties of Co–Zn ferrite prepared via coprecipitation method. J. Magn. Magn. Mater. 405, 36–41 (2016)

    Article  CAS  Google Scholar 

  19. R.A. Bohara, N.D. Thorat, A.K. Chaurasia, S.H. Pawar, Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co–Zn ferrite nanoparticle. RSC Adv. (2015). https://doi.org/10.1039/C5RA04553C

    Article  Google Scholar 

  20. M.P. Ghosh, S. Mukherjee, Ce3+ doped nanocrystalline cobalt–zinc spinel ferrite: microstructural, magnetic, and optical characterizations. J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-03174-4

    Article  Google Scholar 

  21. S. Chakrabarty, A. Dutta, M. Pal, Enhanced magnetic properties of doped cobalt ferrite nanoparticles by virtue of cation distribution. J. Alloy. Compd. (2014). https://doi.org/10.1016/j.jallcom.2014.10.179

    Article  Google Scholar 

  22. B. Alshahrani, H.I. Elsaeedy, S. Fares, A.H. Korna, H.A. Yakout, M.I.A. Abdel Maksoud, R.A. Fahim, M. Gobara, A.H. Ashour, The effect of Ce3+ doping on structural, optical, ferromagnetic resonance, and magnetic properties of ZnFe2O4 nanoparticles. J. Mater. Sci. (2020). https://doi.org/10.1007/s10854-020-04856-9

    Article  Google Scholar 

  23. N.H. Vasoya, V.K. Lakhani, P.U. Sharma, K.B. Modi, R. Kumar, H.H. Joshi, Study on the electrical and dielectric behaviour of Zn-substituted cobalt ferrialuminates. J. Phys. Condens. Matter. 18, 8063–8092 (2006)

    Article  CAS  Google Scholar 

  24. D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, Cation distribution, structural, morphological and magnetic properties of Co1−xZnxFe2O4 (x = 0–1) nanoparticles. RSC Adv. 5, 2338–2345 (2015)

    Article  CAS  Google Scholar 

  25. T.J. Shinde, A.B. Gadkari, P.M. Vasambekar, Saturation magnetization and structural analysis of Ni0.6Zn0.4NdyFe2−yO4 by XRD, IR and SEM techniques. J. Mater. Sci. Mater. Electron. 21, 120–124 (2010)

    Article  CAS  Google Scholar 

  26. P.S. Aghav, V.N. Dhage, M.L. Mane, D.R. Shengule, R.G. Dorik, K.M. Jadhav, Effect of aluminum substitution on the structural and magnetic properties of cobalt ferrite synthesized by sol–gel auto combustion process. Phys. B Condens. Matter 409, 4350–4354 (2011)

    Article  Google Scholar 

  27. V.K. Lakhani, T.K. Pathak, N.H. Vasoya, K.B. Modi, Structural parameters and X-ray Debye temperature determination study on copper-ferrite-aluminates. Solid State Sci. 13, 539–547 (2011)

    Article  CAS  Google Scholar 

  28. Y. Köseŏglu, M. Bay, M. Tan, A. Baykal, H. Sözeri, R. Topkaya, N. Akdŏgan, Magnetic and dielectric properties of Mn0.2Ni0.8Fe2O4 nanoparticles synthesized by PEG-assisted hydrothermal method. J. Nanoparticle Res. 13, 2235–2244 (2010)

    Article  Google Scholar 

  29. R. Rani, P. Dhiman, S.K. Sharma, M. Singh, Structural and magnetic studies of Co0.6Zn0.4Fe2O4 nanoferrite synthesized by solution combustion method, synthesis and reactivity in inorganic. Metal-Org. Nano-Met. Chem. 42, 360–363 (2012)

    Article  CAS  Google Scholar 

  30. S.F. Mansour, O.M. Hemeda, M.A. Abdo, W.A. Nada, Improvement on the magnetic and dielectric behavior of hard-soft ferrite nanocomposites. J. Mol. Struct. 1152, 207–214 (2018)

    Article  CAS  Google Scholar 

  31. R.S. Yadav, I. Kuřitka, J. Havlica, M. Hnatko, C. Alexander, J. Masilko, L. Kalina, M. Hajdúchová, J. Rusnak, V. Enev, Structural, magnetic, elastic, dielectric and electrical properties of hot press sintered Co1−xZnxFe2O4 (x = 0.0, 0.5) spinel ferrite nanoparticles. J. Magn. Magn. Mater. 447, 48–57 (2018)

    Article  Google Scholar 

  32. D.D. Andhare, S.R. Patade, S.A. Jadhav, S.B. Somvanshi, K.M. Jadhav, Rietveld refined structural, morphological, Raman and magnetic investigations of superparamagnetic Zn–Co nanospinel ferrites prepared by cost-effective co-precipitation route. Appl. Phys. A 127, 480 (2021). https://doi.org/10.1007/s00339-021-04603-9

    Article  CAS  Google Scholar 

  33. A.R. Chavan, R.R. Chilwar, P.B. Kharat, K.M. Jadhav, Effect of annealing temperature on structural, morphological, optical and magnetic properties of NiFe2O4 thin films. J. Supercond. Novel Magn. (2018). https://doi.org/10.1007/s10948-018-4565-3

    Article  Google Scholar 

  34. S.S. Jadhav, S.E. Shirsath, S.M. Patange, K.M. Jadhav, Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrite. J. Appl. Phys. 108, 093920–093926 (2010)

    Article  Google Scholar 

  35. N. Najmoddin, A. Beitollahi, H. Kavas, M.M. Seyed, H. Rezaie, J. Akerman et al., XRD Cation distribution and magnetic properties mesoporous Zn substituted CuFe2O4. Ceram Int. 40, 3619–3625 (2014)

    Article  CAS  Google Scholar 

  36. J.B. Goodenough, An interpretation of the magnetic properties of the perovskite-type mixed crystals La1−xSrxCoO3−λ. J. Phys. Chem. Solids. 6, 287–297 (1958)

    Article  CAS  Google Scholar 

  37. J. Kanamori, Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959)

    Article  CAS  Google Scholar 

  38. Z.K. Heiba, M.B. Mohamed, M.A. Ahmed, M.A.A. Moussa, H.H. Hamdeh, Cation distribution and dielectric properties of nanocrystalline gallium substituted nickel ferrite. J. Alloys Compd. 586, 773–781 (2014)

    Article  CAS  Google Scholar 

  39. R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, Low temperature synthesis of nanocrystalline Dy3+ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys. 110, 053910-1-053910–7 (2011)

    Article  Google Scholar 

  40. S. Chakrabarty, A. Dutta, M. Pal, Effect of yttrium doping on structure, magnetic and electrical properties of nanocrystalline cobalt ferrite. J. Magn. Magn. Mater. 461, 69–75 (2018)

    Article  CAS  Google Scholar 

  41. Y. Wang, W. Yang, C. Chen, D.G. Evans, Fabrication and electrochemical characterization of cobalt-based layered double hydroxide nanosheet thin-film electrodes. J. Power Sources 184, 682–690 (2008)

    Article  CAS  Google Scholar 

  42. G.L. Jadhav, S.D. More, C.M. Kale, K.M. Jadhav, Effect of magnesium substitution on the structural, morphological, optical and wettability properties of cobalt ferrite thin films. Physica B 555, 61–68 (2019)

    Article  CAS  Google Scholar 

  43. D.S. Birajdar, D.R. Mane, S.S. More, V.B. Kawade, K.M. Jadhav, Structural and magnetic properties of ZnxCu1.4−xMn0.4Fe1.2O4 ferrites. Mater. Lett. 59, 2981 (2005)

    Article  CAS  Google Scholar 

  44. L. Néel, Aimantation a saturation des ferrites mixtes de nickel et de zinc. C. R. Acad. Sci. Paris 230, 375–377 (1950)

    Google Scholar 

  45. P. Masina, T. Moyo, H.M.I. Abdallah, Synthesis, structural and magnetic properties of ZnxMg1−xFe2O4 nanoferrites. J. Magn. Magn. Mater. 381, 41–49 (2015)

    Article  CAS  Google Scholar 

  46. C.H. Srinivasa, E.R. Kumar, B.V. Tirupanyam, S.S. Meena, P. Bhatt, C.L. Prajapat, T.V. Chandrasekhar-Rao, D.L. Sastry, Study of magnetic behavior in co-precipitated Ni–Zn ferrite nanoparticles and their potential use for gas sensor applications. J. Magn. Magn. Mater. 502, 166534–166539 (2020)

    Article  Google Scholar 

  47. R. Arulmurugan, B. Jeyadevan, G. Vaidyanathan, S. Sendhilnathan, Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation. J. Magn. Magn. Mater. 288, 470–477 (2005)

    Article  CAS  Google Scholar 

  48. N. Ghazi, H. Mahmoudi Chenari, F.E. Ghodsi, Rietveld refinement, morphology analysis, optical and magnetic properties of magnesium-zinc ferrite nanofibers. J. Magn. Magn. Mater. 468, 132–140 (2018)

    Article  CAS  Google Scholar 

  49. A. Ashok, L.J. Kennedy, J.J. Vijaya, Structural, optical and magnetic properties of Zn1-xMnxFe2O4 (0 ≤ x ≤ 0.5) spinel nano particles for transesterification of used cooking oil. J. Alloys Compd. 780, 816–828 (2019)

    Article  CAS  Google Scholar 

  50. S. Agrawal, A. Parveen, A. Azam, Structural, electrical, and optomagnetic tweaking of Zn doped CoFe2-xZnxO4 nanoparticles. J. Magn. Magn Mater. 414, 144–152 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mr. E. K Kore is grateful to UGC (WRO), Pune for Financial Assistance to College Teachers for Undertaking Minor Research Project (File No: 47-455/12(WRO)) in the subject of Physics entitled “Development and Characterization of Co–Zn ferrite Nanoparticles for Ferrofluids Application” for the study and encouraging for research.

Author information

Authors and Affiliations

Authors

Contributions

EKK contributed to conceptualization, methodology, software, validation, formal analysis, investigation, resources, data acquisition, writing and preparation of the original draft and writing, reviewing and editing of the manuscript. GSS and RNM contributed to supervision and writing, review and editing of the manuscript.

Corresponding author

Correspondence to Ekanath K. Kore.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kore, E.K., Shahane, G.S. & Mulik, R.N. Effect of ‘Zn’ substitution on structural, morphological, magnetic and optical properties of Co–Zn ferrite nanoparticles for ferrofluid application. J Mater Sci: Mater Electron 33, 9815–9829 (2022). https://doi.org/10.1007/s10854-022-07949-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07949-9

Navigation