Skip to main content

Advertisement

Log in

Enhancement of dielectric and multiferroic properties in Sr-modified 0.7BaTiO3–0.3ZnFe2O4 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multiferroic ceramic composites 0.7(Ba1−xSrxTiO3)–0.3ZnFe2O4 (x = 0.0, 0.1, 0.3) were synthesized by easy and inexpensive solid-state reaction technique. The coexistence of tetragonal perovskite BTO(BaTiO3) and cubic spinel ZFO(ZnFe2O4) phases was verified by X-ray diffraction analysis. The crystallite size in the range 32–49 nm was found from XRD data. The substantial growth of microstructural properties (grain growth, motion of grain boundaries, decreases of voids, etc.) leads to the enhancement of electrical and magnetic properties of the samples. The transition temperature (\({T}_{\text{r}})\) decreases at the lower temperature around 35–45 \(^\circ{\rm C}\) for the replacement of Sr in BTO-ZFO matrix. The variations of dielectric loss with temperature are ascribed to the retarded space polarization. The activation energy of the materials was obtained from the variation of ac conductivity with temperature. The grain and grain boundary resistance was estimated through Nyquist plot which suggest NTCR (Negative temperature coefficient of resistance) behaviour of the material. The conduction of the composite ceramics was related to the charge carriers hopping mechanism. The activation energy was calculated to be in the range of 0.1286–0.0939 eV from temperature dependence of ac conductivity. The M-H measurements showed that the remnant magnetization at low temperatures is significantly enhanced in comparison to pure zinc ferrite (1.35 emu/g) owing to the existence of the Ba1−xSrxTiO3 phase (3.7 emu/g). The remnant polarization was found 12.01 μC/cm2 and 4.12 μC/cm2 of doped (x = 0.3) and pure sample (x = 0) respectively, and it suggest the relaxor properties of the glossy ferroelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)

    Article  Google Scholar 

  2. J. Ma, J. Hu, Z. Li, C.-W. Nan, Adv. Mater. 23, 1062–1087 (2011)

    Article  CAS  Google Scholar 

  3. J.F. Scott, Nat. Mater. 64, 256–257 (2007)

    Article  Google Scholar 

  4. K.C. Verma, S. Singh, S.K. Tripathi, R.K. Kotnala, J. Appl. Phys. 116, 124103 (2014)

    Article  Google Scholar 

  5. B. Li, C. Wang, G. Dou, Cryst. Eng. Comm. 15, 2147–2156 (2013)

    Article  CAS  Google Scholar 

  6. K.T. Arul, M. Ramanjaneyulu, M.S.R. Rao, Current Appl. Phys. 19, 375–380 (2019)

    Article  Google Scholar 

  7. K.T. Arul, M.S.R. Rao, J. Phys. Chem. Solids. 146, 109371 (2020)

    Article  CAS  Google Scholar 

  8. K.C. Verma, R.K. Kotnala, N.S. Negi, AIP Conf. Proc (2008). https://doi.org/10.1063/1.2906359

    Article  Google Scholar 

  9. C.-X. Li, B. Yang, S.T. Zhang, F.M. Wu, W.W. Cao, J. Am. Ceram. Soc. 95, 3901–3905 (2012)

    Article  CAS  Google Scholar 

  10. C. Darie, C. Goujon, M. Bacia, H. Klein, P. Toulemonde, P. Bordet, E. Suard, Solid State Sci. 12, 660–664 (2010)

    Article  CAS  Google Scholar 

  11. B.S. Araújo, A.M. Arévalo-López, C.C. Santos, J.P. Attfield, C.W.A. Paschoal, A.P. Ayala, J. Appl. Phys. 127, 114102 (2020)

    Article  Google Scholar 

  12. S. Niitaka, M. Azuma, M. Takano, E. Nishibori, M. Takata, M. Sakata, Solid State Ionics 172, 557–559 (2004)

    Article  CAS  Google Scholar 

  13. S. Hanif, M. Hassan, S. Riaz, S. Atiq, S.S. Hussain, S. Naseem, G. Murtaza, Results Phys. 7, 3190–3195 (2017)

    Article  Google Scholar 

  14. Y. Shen, J. Sun, L. Li, Y. Yao, C. Zhou, R. Su, Y. Yang, J. Mater. Chem. C. 2, 2545–2551 (2014)

    Article  CAS  Google Scholar 

  15. Y. Li, Z. Liao, F. Fang, X. Wang, L. Li, J. Zhu, Appl. Phys. Lett. 105, 182901 (2014)

    Article  Google Scholar 

  16. H. Lu, T.A. George, Y. Wang, I. Ketsman, J.D. Burton, C.W. Bark, S. Ryu, D.J. Kim, J. Wang, C. Binek, P.A. Dowben, A. Sokolov, C.-B. Eom, E.Y. Tsymbal, A. Gruverman, Appl. Phys. Lett. 100, 232904 (2012)

    Article  Google Scholar 

  17. R. Martínez, A. Kumar, R. Palai, J.F. Scott, R.S. Katiyar, J. Phys. D 44, 105302 (2011)

    Article  Google Scholar 

  18. C.E. Ciomaga, M. Airimioaei, I. Turcan, A.V. Lukacs, S. Tascu, M. Grigoras, N. Lupu, J. Banys, L. Mitoseriu, J. Alloys Compd. 775, 90–99 (2019)

    Article  CAS  Google Scholar 

  19. J.Y. Zhai, N. Cai, L. Liu, Y.H. Lin, C.W. Nan, Mater. Sci. Eng. B 99, 329–331 (2003)

    Article  Google Scholar 

  20. J. Zhai, N. Cai, Z. Shi, Y. Lin, C.W. Nan, J. Appl. Phys. 95, 5685 (2004)

    Article  CAS  Google Scholar 

  21. C.E. Ciomaga, C. Galassi, F. Prihor, I. Dumitru, L. Mitoseriu, A.R. Iordan, M. Airimioaei, M.N. Palamaru, J. Alloys Compd. 485, 372–378 (2021)

    Article  Google Scholar 

  22. C.E. Ciomaga, A.M. Neagu, M.V. Pop, M. Airimioaei, S. Tascu, G. Schileo, C. Galassi, L. Mitoseriu, J. Appl. Phys. 113, 074103 (2013)

    Article  Google Scholar 

  23. Y. Jia, S.W. Or, J. Wang, H.L.W. Chan, X. Zhao, H. Luo, J. Appl. Phys. 101, 104103 (2007)

    Article  Google Scholar 

  24. G. Liu, C.W. Nan, Z.K. Xu, H. Chen, J. Phys. D 38, 2321 (2005)

    Article  CAS  Google Scholar 

  25. K. Sadhana, S.R. Murthy, S. Jie, Y. Xie, Y. Liu, Q. Zhan, R.-W. Li, J. Appl. Phys. 113, 17C731 (2013)

    Article  Google Scholar 

  26. O.M. Hemeda, A. Tawfik, A-Al-Sharif, M.A. Amer, B.M. Kamal, D.E. El Refaay, M. Bououdina, J. Magn. Magn. Mater. 324, 4118–4126 (2012).

  27. H. Yang, H. Wang, L. He, X. Yao, Mater. Chem. Phys. 134, 777–782 (2012)

    Article  CAS  Google Scholar 

  28. S. Pachari, S.K. Pratihar, B.B. Nayak, J. Alloys Compd. 784, 897–905 (2019)

    Article  CAS  Google Scholar 

  29. T. Murata, Y. Kozuka, M. Uchida, M. Kawasaki, J. Appl. Phys. 118, 193901 (2015)

    Article  Google Scholar 

  30. M. Amir, H. Gungunes, A. Baykal, M.A. Almessiere, H. Sözeri, I. Ercan, M. Sertkol, S. Asiri, A. Manikandan, J. Supercond. Nov. Magn. 31, 3347–3356 (2018)

    Article  CAS  Google Scholar 

  31. K.C. Verma, S.K. Tripathi, R.K. Kotnala, RSC Adv. 4, 60234–60242 (2014)

    Article  Google Scholar 

  32. M. Lorenz, M. Ziese, G. Wagner, J. Lenzner, C. Kranert, K. Brachwitz, H. Hochmuth, P. Esquinazi, M. Grundmann, CrystEngComm 14, 6477–6486 (2012)

    Article  CAS  Google Scholar 

  33. C. Jin, P. Li, W. Mi, H. Bai, J. Appl. Phys. 115, 213908 (2014)

    Article  Google Scholar 

  34. C.B. Sawyer, C.H. Tower, Phys. Rev. 35, 269 (1930)

    Article  CAS  Google Scholar 

  35. E. Wu, J. Appl. Cryst. 22, 506–510 (1989)

    Article  CAS  Google Scholar 

  36. M. Amir, H. Gungunes, A. Baykal, M.A. Almessiere, H. Sozeri, I. Ercan, M. Sertko, S. Asiri, A. Manikandan, J. Supercon, Novel Magn. 31, 3347–3356 (2018)

    Article  CAS  Google Scholar 

  37. Y. Xue, R. Xu, Z. Wang, R. Gao, C. Li, G. Chen, X. Deng, W. Cai, C. Fu, J. Electron. Mater. 48, 4806–4817 (2019)

    Article  CAS  Google Scholar 

  38. P.D. Prasad, J. Hemalatha, Phys. B 573, 1–6 (2019)

    Article  Google Scholar 

  39. S. Singh, N. Kumar, R. Bhargava, M. Sahni, K.D. Sung, J.H. Jung, J. Alloys Compd. 587, 437–441 (2014)

    Article  CAS  Google Scholar 

  40. D. Mohanty, P. Mallick, S.K. Biswal, B. Behera, R.K. Mohapatra, A. Behera, S.K. Satpathy, Mater. Today Proc. 33, 4971–4975 (2020)

    Article  CAS  Google Scholar 

  41. L. Zhao, D. Guo, X. Kang, L. Liang, Z. Yang, Y. Sang, H. Liu, Sci. Adv. Mater. 8, 1200–1207 (2016)

    Article  CAS  Google Scholar 

  42. R. Srivastava, B.C. Yadav, Int. J. Green Nanotec. 4, 141–154 (2012)

    Article  CAS  Google Scholar 

  43. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  44. L. Mitoseriu, I. Pallecchi, V. Buscaglia, A. Testino, C.E. Ciomaga, A. Stancu, J. Magn. Magn. Mater. 316, e603–e606 (2007)

    Article  CAS  Google Scholar 

  45. H.-J. Yang, J. Yuan, Y. Li, Z.L. Hou, H.-B. Jin, X.-Y. Fang, M.-S. Cao, Solid State Commun. 163, 1–6 (2013)

    Article  CAS  Google Scholar 

  46. H. Yang, M. Cao, Y. Li, H. Shi, Z. Hou, X. Fang, H. Jin, W. Wang, J. Yuan, Adv. Optical Mater. 2, 214–219 (2014)

    Article  Google Scholar 

  47. Z. Yu, C. Ang, J. Appl. Phys. 91, 794 (2001)

    Article  Google Scholar 

  48. T. Garg, A.R. Kulkarni, N. Venkataramani, Smart Mater. Struct. 25 (2016).

  49. N. Sivakumar, A. Narayanasamy, B. Jeyadevan, R.J. Joseyphus, C. Venkateswaran, J. Phys. D 41, 245001 (2008)

    Article  Google Scholar 

  50. H. Zheng, W.J. Weng, G.R. Han, P.Y. Du, Ceram. Int. 1, 1511–1519 (2015)

    Article  Google Scholar 

  51. H. Zheng, L. Li, Z. Xu, W. Weng, G. Han, N. Ma, P. Du, J. Appl. Phys. 113, 044101 (2013)

    Article  Google Scholar 

  52. J. Liu, Z. Jia, W. Zhou, X. Liu, C. Zhang, B. Xu, G. Wu, Chem. Eng. 429, 132253 (2022)

    Article  CAS  Google Scholar 

  53. Z. Wang, X. Wang, N. Zhao, J. He, S. Wang, G. Wu, Y. Cheng, J. Mater. Sci: Mater Electron 32, 20973–20984 (2021)

    CAS  Google Scholar 

  54. X. Wang, X. Deng, H. Wen, L. Li, Appl. Phys. Lett. 89, 162902 (2006)

    Article  Google Scholar 

  55. A. Jain, Y.G. Wang, H. Guo, J. Alloys Compd. 857, 158244 (2021)

    Article  CAS  Google Scholar 

  56. B.S. Kar, M.N. Goswami, P.C. Jana, J. Alloys Compd. 861 (2021).

  57. M.A. El Hiti, J. Magn. Magn. Mater. 164, 187–196 (1996)

    Article  Google Scholar 

  58. A. Sari, A. Karaipekli, Appl. Therm. Eng. 27, 1271–1277 (2007)

    Article  CAS  Google Scholar 

  59. X. Liu, H. Yang, F. Yan, Y. Qin, Y. Lin, T. Wang, J. Alloys Compd. 778, 97–104 (2019)

    Article  CAS  Google Scholar 

  60. M. Zhou, R. Liang, Z. Zhou, X. Dong, Ceram. Int. 45, 3582–3590 (2019)

    Article  CAS  Google Scholar 

  61. K. Uchino, S. Nomura, Ferroelectrics 44, 55–61 (2011)

    Google Scholar 

  62. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswamy, J. Mater. Sci. Mater. Electron. 269(26), 6572–6584 (2015)

    Article  Google Scholar 

  63. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, M.L. Nandagoswami, A. Kumar, Mater. Res. Express. 3, 065017 (2016)

    Article  Google Scholar 

  64. S. Ayyappan, S.P. Raja, C. Venkateswaran, J. Philip, B. Raj, Appl. Phys. Lett. 96, 143106 (2010)

    Article  Google Scholar 

  65. R. Bhargava, P.K. Sharma, A.K. Chawla, S. Kumar, R. Chandra, A.C. Pandey, N. Kumar, Mater. Chem. Phys. 125, 664–671 (2011)

    Article  CAS  Google Scholar 

  66. P. Dey, T.K. Nath, M.L.N. Goswami, T.K. Kundu, Appl. Phys. Lett. 90, 162510 (2007)

    Article  Google Scholar 

  67. M. Rawat, K.L. Yadav, Smart Mater. Struct. 24, 045041 (2015)

    Article  Google Scholar 

  68. K.L. Manjusha, Yadav. Adv. Mater. Lett. 6, 853–861 (2015)

    CAS  Google Scholar 

  69. M.H. Frey, D.A. Payne, Phys. Rev. B. 54, 3158 (1996)

    Article  CAS  Google Scholar 

  70. C. Ederer, N.A. Spaldin, Phys. Rev. Lett. 95, 257601 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to UGC, DAE CSR, Kolkata, India, and IIT Kharagpur, India for Magnetic (SQUID) and SEM measurements respectively. This exertion is partly supported by DST research project (Memo No.: 296 (Sanc.)/ST/P/S&T/16G-17/2017) from the DST, West Bengal, India.

Funding

Funding was provided by Department of Science and Technology, Government of West Bengal (296 (Sanc.)/ST/P/S& T/16G-17/2017).

Author information

Authors and Affiliations

Authors

Contributions

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript by using our scientific data. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication.

Corresponding author

Correspondence to Bappa Sona Kar.

Ethics declarations

Conflict of interest

All the authors have no interest in any financial and personal relationships with other people or organizations that could inappropriately influence (bias) the work reported in this paper. Authors are interested only for academic purposes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, B.S., Goswami, M.N. & Jana, P.C. Enhancement of dielectric and multiferroic properties in Sr-modified 0.7BaTiO3–0.3ZnFe2O4 ceramics. J Mater Sci: Mater Electron 33, 23949–23963 (2022). https://doi.org/10.1007/s10854-022-07879-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07879-6

Navigation