Skip to main content
Log in

Growth and characterization of organic 4-methyl-2-nitroaniline single crystals for nonlinear optical applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The organic material 4-methyl-2-nitroaniline was successfully grown as a single crystal by the slow evaporation solution growth technique. The single crystal XRD study shows that the grown 4-methyl-2-nitroaniline belongs to the centrosymmetric space group C2/c with a monoclinic crystal system and the obtained lattice parameters are a = 13.11 Å, b = 8.97 Å, c = 12.21 Å, α = 90°, β = 103.86°, γ = 90° and volume = 1395 Å3. The powder XRD diffraction peaks were indexed. The presence of various functional groups in the grown crystal has been confirmed by FTIR and FT-Raman spectral analyses. The optical properties of the grown 4-methyl-2-nitroaniline crystal were investigated using UV–Vis–NIR studies. The optical parameters such as optical band gap (2.31 eV), Urbach energy (0.051 eV), steepness parameter (3.799 × 1016) and electron–phonon interaction (1.754 × 10–17) were calculated. TG–DTA analyses show the melting and decomposition points of 4-methyl-2-nitroaniline single crystal as 118 °C and 228 °C, respectively. The kinetic parameters such as activation energy, frequency factor, entropy, enthalpy, and Gibbs free energy were calculated using Coats–Redfern and Horowitz–Mertzger methods. The dielectric constant and dielectric loss decrease while the AC conductivity increases with increasing frequency, which shows that the grown 4-methyl-2-nitroaniline crystal has normal dielectric behavior. The grown crystal electrical properties such as Penn gap (5.62 eV) and Fermi energy (13.72 eV) have been calculated. The Z-scan studies are used to analyze the third-order nonlinear optical (NLO) properties. The result shows that the grown 4-methyl-2-nitroaniline single crystal may be used for optical switching applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. D.S. Chemla, J. Zyss (eds.), Nonlinear optical properties of organic molecules and crystals (Academic Press, New York, 1987)

    Google Scholar 

  2. M. Somac, A. Somac, B.L. Davies, M.G. Humphery, M.S. Wong, Opt. Mater. 21, 485–488 (2002)

    Google Scholar 

  3. J.G. Breitzar, D.D. Diott, L.K. Iwaki, S.M. Kirkpatrick, T.B. Rauchturs, J. Phys. Chem. A 103, 6930–6937 (1999)

    Article  Google Scholar 

  4. R.K. Choubey, S. Medhekar, R. Kumar, S. Mukherjee Sunil Kumar, J. Mater. Sci. Mater. Electron. 25, 1410–1415 (2014)

    Article  CAS  Google Scholar 

  5. M.J. Weber, D. Milam, W.L. Smith, Opt. Eng. 17, 463–469 (1978)

    Article  CAS  Google Scholar 

  6. M.J. Moran, C.Y. She, R.L. Carman, IEEE J Quantum. Electron QE 11, 259–263 (1975)

    Article  Google Scholar 

  7. S.R. Friberg, P.W. Smith, IEEE J. Quantum Electron QE 23, 2089–2094 (1987)

    Article  Google Scholar 

  8. R. Adair, L.L. Chase, S.A. Payne, J. Opt. Soc. Anier. B 4, 875–881 (1987)

    Article  CAS  Google Scholar 

  9. S. Medhekar, R. Kumar, S. Mukherjee, R.K. Choubey, A.I.P. Conf, Proc. 1512, 470–471 (2013)

    CAS  Google Scholar 

  10. W.E. Williams, M.J. Soileau, E.W. Van Stryland, Opt. Commun. 50, 256–260 (1984)

    Article  CAS  Google Scholar 

  11. D.F. Berry, S.A. Royd, Soil Sci. Soc. Am J. 48, 565–569 (1984)

    Article  CAS  Google Scholar 

  12. Acta Cryst. C52, 2074–2076 (1996)

  13. JCPDS file card no: 53–1473

  14. S. Anandhi, T.S. Shyju, R. Gopalakrishnan, J. Cryst. Growth. 312, 3292–3299 (2010)

    Article  CAS  Google Scholar 

  15. V.R. Shinde, T.P. Gujar, C.D. Lokhande, R.S. Mane, S.H. Han, Mater. Chem. Phys. 96, 326–330 (2006)

    Article  CAS  Google Scholar 

  16. A. Periyasamy, N.E. Kadry, S.A. Mahmoud, Thin Solid Films 269, 117–120 (1995)

    Article  Google Scholar 

  17. F. Urbach, Phys. Rev. 92, 1324–1325 (1953)

    Article  CAS  Google Scholar 

  18. P. Rekha, P. Jayaprakash, G. Rajasekar, R. Kanagadurai, R.M. Kumar, G. Vinitha, J. Mol. Struct. 1177, 579–593 (2019)

    Article  CAS  Google Scholar 

  19. A.S. Hassanien, J Superlattices Microstruct. 89, 153–169 (2016)

    Article  CAS  Google Scholar 

  20. T. Suthan, N.P. Rajesh, J. Cryst. Growth 312, 3156–3160 (2010)

    Article  CAS  Google Scholar 

  21. T. Suthan, N.P. Rajesh, C.K. Mahadevan, K. Senthil Kumar, G. Bhagavannarayana, Spectrochim Acta. A. Mol Biomol. 79, 1443–1448 (2011)

    Article  CAS  Google Scholar 

  22. A.W. Coats, J. Redfern, Nature 201, 68–69 (1964)

    Article  CAS  Google Scholar 

  23. H.H. Horowitz, G. Metzger, Anal. Chem. 35, 1464–1468 (1963)

    Article  CAS  Google Scholar 

  24. T. Taakeyama, F.X. Quinn, Thermal Analysis Fundamentals and Applications to Polymer Science (John Wiley and Sons, Chichester, 1994)

    Google Scholar 

  25. C.J. Benet, F.D. Gnanam, Cryst. Res. Technol. 29, 707–712 (1994)

    Article  Google Scholar 

  26. T. Suthan, N.P. Rajesh, C.K. Mahadevan, D. Sajan, G. Bhagavannarayana, Mater. Chem. Phys. 130, 915–920 (2011)

    Article  CAS  Google Scholar 

  27. T. Suthan, P.V. Dhanaraj, N.P. Rajesh, C.K. Mahadevan, G. Bhagavannarayana, Cryst. Eng Comm. 13, 4018–4024 (2011)

    Article  CAS  Google Scholar 

  28. T. Suthan, P.V. Dhanaraj, N.P. Rajesh, Spectrochim. Acta A Mol. Biomol. 87, 194–198 (2012)

    Article  CAS  Google Scholar 

  29. A.E. Bekheet, N.A. Hegab, Vacuum 83, 391–396 (2009)

    Article  Google Scholar 

  30. F. Yakuphanoglu, E. Evin, M. Okutan, Physica. B. 382, 285–289 (2006)

    Article  CAS  Google Scholar 

  31. U.S. Army, Nanostruct Mater. 4, 985–1009 (1994)

    Article  Google Scholar 

  32. K. Muthukumar, P. Kuppusami, V. S. RaghunathanIonic Conductivity Measurements in Gadolina Doped Ceria (ISRS Chennai, India, 2004)

  33. N.M. Ravindra, R.P. Bharadwaj, K. Sunil Kumar, V.K. Srivastava, Infrared Phys 21, 369–381 (1981)

    Article  CAS  Google Scholar 

  34. V. Kumar, B.S.R. Sastry, J. Phys. Chem. Solids 66, 99–102 (2005)

    Article  CAS  Google Scholar 

  35. D.R. Penn, Phys. Rev. 128, 2093–2097 (1962)

    Article  CAS  Google Scholar 

  36. S.S. Bala Solanki, N.P. Rajesh, T. Suthan, Opt Laser Technol. 103, 163–169 (2018)

    Article  Google Scholar 

  37. F. Helen, G. Kanchana, Mater. Chem. Phys. 151, 5–13 (2015)

    Article  CAS  Google Scholar 

  38. R.P. Jebin, T. Suthan, T.R. Anitha, N.P. Rajesh, G. Vinitha, J Mater Sci: Mater Electron. 32, 3232–3246 (2021)

    CAS  Google Scholar 

  39. Shovan Kumar patra, Bhavesh Kumar Dadhich, BhavyaBhushan, Ravi Kant Choubey, Amiya Priyam, ACS. Omega 6(46), 31375–31383 (2021)

    Google Scholar 

  40. R.P. Jebin, T. Suthan, N.P. Rajesh, G. Vinitha, U. Madhusoodhanan, Spectrochim. Acta A Mol. Biomol. 135, 959–964 (2015)

    Article  CAS  Google Scholar 

  41. M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14, 955–957 (1989)

    Article  CAS  Google Scholar 

  42. E.W. Van Stryland, M. Sheik-Bahae, M.G. Kuzyk, C.W. Dirk (eds.), Z-Scan measurements of optical nonlinearities (Marcel Dekker Inc, New York, 1998)

    Google Scholar 

  43. R.P. Jebin, T. Suthan, N.P. Rajesh, G. Vinitha, Opt. Laser Technol. 115, 500–507 (2019)

    Article  CAS  Google Scholar 

  44. R.K. Choubey, R. Trivedi, M. Das, P.K. Sen, P. Sen, S. Kar, K.S. Bartwal, R.A. Ganeev, J. Cryst. Growth. 311, 2597–2601 (2009)

    Article  CAS  Google Scholar 

  45. P.V. Dhanaraj, N.P. Rajesh, J. Kalanyasundar, S. Natarajan, G. Vinitha, Mater. Chem. Phys. 129(1), 457–463 (2011)

    Article  CAS  Google Scholar 

  46. V. Subashini, S. Ponnusamy, C. Muthamizhchelvan, J. Cryst. Growth. 363, 211–219 (2013)

    Article  Google Scholar 

  47. Bhavesh Kumar Dadhich, Indrajit Kumar, Ravi Kant Choubey, BhavyaBhushan, Amiya riyam. Photochem. Photobiol. Sci. 16, 1556–1562 (2017)

    Google Scholar 

  48. H.M. Shanshoola, M. Yahaya, W.M.M. Yunus, I.Y. Abdullah, J. Teknol. 78, 33–38 (2016)

    Google Scholar 

  49. G.A. Swartzlander Jr., D.R. Andersen, J.J. Regan, H. Yin, A.E. Kaplan, Phys. Rev. Lett. 66, 1583–1586 (1991)

    Article  Google Scholar 

  50. Z. Chen, M. Asaro, O. Ostroverkhova, W.E. Moerner, M. He, R.J. Twieg, Opt. Lett. 28, 2509–2511 (2003)

    Article  CAS  Google Scholar 

  51. N.Y. Kamber, G. Zhang, S. Liu, S.M. Mikha, W. Haidong, Opt. Commun. 184, 475–483 (2000)

    Article  CAS  Google Scholar 

  52. M.T. Zhao, B.P. Singh, P.N. Prasad, J. Chem. Phys. 89, 5535–5541 (1988)

    Article  CAS  Google Scholar 

  53. H. Fan, Q. Ren, X. Wang, T. Li, J. Sun, G. Zhang, D. Xu, G. Yu, Z. Sun, J. Nat. Sci. 1, 136–141 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University Grants Commission (UGC), South Eastern Regional Office (SERO), Government of India, under the grant of Minor Research Project UGC Reference No: F. MRP-7005/16 (SERO/UGC) Link No: 7005, is hereby gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to T. Suthan.

Ethics declarations

Conflict of interest

No conflict of interest exists or if such conflict exists, the exact nature must be declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prince, S., Suthan, T., Gnanasambandam, C. et al. Growth and characterization of organic 4-methyl-2-nitroaniline single crystals for nonlinear optical applications. J Mater Sci: Mater Electron 33, 5909–5923 (2022). https://doi.org/10.1007/s10854-022-07772-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07772-2

Navigation