Skip to main content
Log in

Effect of annealing treatment of PC60BM layer on inverted perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The optimization of perovskite interfaces is an effective method to boost the device efficiency. In this review, we have reported an effective surface passivation method to improve the efficiency of the PSCs by heating the PC60BM ETL layer. The obtained results shows that device performance was effectively improved after an annealing treatment of the PC60M layer at 100 °C for 10 min. Furthermore, this improvement is due to the passivation of structural defects at the perovskite/ETL interface. Moreover, the annealing treatment of the PCBM layer could enhance electron extraction and suppressed charge recombination by smoothing the surface of the perovskite and decreasing the surface traps, which has enhanced the device efficiency to 10.22%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data related to this article have been provided in this article.

References

  1. R.E.C. NREL, https://www.nrel.gov/pv/cell-efficiency.html. (september 2021)

  2. Y. Liu, M. Bag, L.A. Renna, Z.A. Page, P. Kim, T. Emrick, T.P. Russell, Understanding interface engineering for high-performance fullerene/perovskite planar heterojunction solar cells. Adv. Energy. Mater. 6(2), 1501606 (2016)

    Article  Google Scholar 

  3. H. Mehdizadeh-Rad, J. Singh, Influence of urbach energy, temperature, and longitudinal position in the active layer on carrier diffusion length in perovskite solar cells. ChemPhysChem 20(20), 2712–2717 (2019)

    Article  CAS  Google Scholar 

  4. H.B. Lee, N. Kumar, M.M. Ovhal, Y.J. Kim, Y.M. Song, J.W. Kang, Dopant-Free, Amorphous–Crystalline Heterophase SnO2 Electron Transport Bilayer Enables> 20% Efficiency in Triple‐Cation Perovskite Solar Cells. Adv. Func. Mater. 30(24), 2001559 (2020)

    Article  CAS  Google Scholar 

  5. Y.H. Seo, J.H. Kim, D.H. Kim, H.S. Chung, S.I. Na, In situ TEM observation of the heat–induced degradation of single–and triple–cation planar perovskite solar cells. Nano. Energy. 77, 105164 (2020)

    Article  CAS  Google Scholar 

  6. C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26(10), 1584–1589 (2014)

    Article  CAS  Google Scholar 

  7. P. Prabukanthan, TRajesh Kumar, G. Harichandran, "Effect of Sm3+ on the structural, optical, magnetic and electrical properties of electrochemical deposition of ZnSe thin films.“. Mater. Res. Exp. 2(9), 096102 (2015)

    Article  Google Scholar 

  8. P. Prabukanthan, S. Thamaraiselvi, G. Harichandran, Single step electrochemical deposition of p-type undoped and Co2+ doped FeS2 thin films and performance in heterojunction solid solar cells. J. Electrochem. Soc. 164(9), D581 (2017)

    Article  CAS  Google Scholar 

  9. T.G. Allen et al., "Passivating contacts for crystalline silicon solar cells.“. Nat. Energy. 4(11), 914–928 (2019)

    Article  CAS  Google Scholar 

  10. Q. He, K. Yao, X. Wang, X. Xia, S. Leng, F. Li, Room-temperature and solution-processable Cu-doped nickel oxide nanoparticles for efficient hole-transport layers of flexible large-area perovskite solar cells. ACS Appl. Mater. Interfaces 9(48), 41887–41897 (2017)

    Article  CAS  Google Scholar 

  11. N. Lakhdar, A. Hima, Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt. Mater. 99, 109517 (2020)

    Article  CAS  Google Scholar 

  12. N. Rai, S. Rai, P.K. Singh, P. Lohia, D.K. Dwivedi, Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci.: Mater. Electron. 31(19), 16269–16280 (2020)

    CAS  Google Scholar 

  13. M. Spalla, L. Perrin, E. Planes, M. Matheron, S. Berson, L. Flandin, Effect of the Hole Transporting/Active Layer Interface on the Perovskite Solar Cell Stability. ACS Appl. Energy. Mater. 3(4), 3282–3292 (2020)

    Article  CAS  Google Scholar 

  14. I. Lee, N. Rolston, P.L. Brunner, R.H. Dauskardt, Hole-transport layer molecular weight and doping effects on perovskite solar cell efficiency and mechanical behavior. ACS Appl. Mater. Interfaces 11(26), 23757–23764 (2019)

    Article  CAS  Google Scholar 

  15. Y. Zhong, M. Hufnagel, M. Thelakkat, C. Li, S. Huettner, Role of PCBM in the suppression of hysteresis in perovskite solar cells. Adv. Func. Mater. 30(23), 1908920 (2020)

    Article  CAS  Google Scholar 

  16. D. Yang, X. Zhang, K. Wang, C. Wu, R. Yang, Y. Hou, … S. Priya, Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers. Nano Lett. 19(5), 3313–3320 (2019)

    Article  CAS  Google Scholar 

  17. J. Xu, A. Buin, A.H. Ip, W. Li, O. Voznyy, R. Comin, E.H. Sargent, Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun 6(1), 1–8 (2015)

    CAS  Google Scholar 

  18. Y. Bai, H. Yu, Z. Zhu, K. Jiang, T. Zhang, N. Zhao, H. Yan, High performance inverted structure perovskite solar cells based on a PCBM: polystyrene blend electron transport layer. J. Mater. Chem. A 3(17), 9098–9102 (2015)

    Article  CAS  Google Scholar 

  19. J. Seo, S. Park, Y.C. Kim, N.J. Jeon, J.H. Noh, S.C. Yoon, S.I. Seok, Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ. Sci. 7(8), 2642–2646 (2014)

    Article  CAS  Google Scholar 

  20. T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, T.J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH 3 NH 3) PbI 3 for solid-state sensitised solar cell applications. J. Mater. Chem. A. 1(18), 5628–5641 (2013)

    Article  CAS  Google Scholar 

  21. S. Tombe, G. Adam, H. Heilbrunner, C. Yumusak, D.H. Apaydin, B. Hailegnaw, … M.C. Scharber, The influence of perovskite precursor composition on the morphology and photovoltaic performance of mixed halide MAPbI3-xClx solar cells. Sol. Energy 163, 215–223 (2018)

    Article  CAS  Google Scholar 

  22. Y. Gao, Y. Wu, H. Lu, C. Chen, Y. Liu, X. Bai, … & Y. Zhang, CsPbBr3 perovskite nanoparticles as additive for environmentally stable perovskite solar cells with 20.46% efficiency. Nano Energy 59, 517–526 (2019)

    Article  CAS  Google Scholar 

  23. Q. Wang, M. Lyu, M. Zhang, J.H. Yun, H. Chen, L. Wang, Transition from the tetragonal to cubic phase of organohalide perovskite: The role of chlorine in crystal formation of CH3NH3PbI3 on TiO2 substrates. J. Phys. Chem. Lett. 6(21), 4379–4384 (2015)

    Article  CAS  Google Scholar 

  24. F. Haque, H. Yi, L. Duan, Y. Zhang, M. Wright, G. Conibeer, A. Uddin, Optimisation of annealing temperature for low temperature processed inverted structure Caesium Formamidinium Lead Triiodide perovskite solar cells. Mater. Sci. Semicond. Process. 102, 104580 (2019)

    Article  CAS  Google Scholar 

  25. E.L. Unger, A.R. Bowring, C.J. Tassone, V.L. Pool, A. Gold-Parker, R. Cheacharoen, … M.D. McGehee, Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. Chem. Mater. 26(24), 7158–7165 (2014)

    Article  CAS  Google Scholar 

  26. H. Mehdi, A. Mhamdi, A. Bouazizi, Effect of annealing treatment on the properties of inverted solar cells based on mixed halide perovskite. Physica E 119, 114000 (2020)

    Article  CAS  Google Scholar 

  27. S.E. Chiang, J.R. Wu, H.M. Cheng, C.L. Hsu, J.L. Shen, C.T. Yuan, S.H. Chang, Origins of the s-shape characteristic in J–V curve of inverted-type perovskite solar cells. Nanotechnology 31(11), 115403 (2019)

    Article  Google Scholar 

  28. S.H. Chang, C.C. Chen, L.C. Chen, C.L. Tien, H.M. Cheng, W.C. Huang, … C.G. Wu, Unraveling the multifunctional capabilities of PCBM thin films in inverted-type CH3NH3PbI3 based photovoltaics. Sol. Energy Mater. Sol. Cells 169, 40–46 (2017)

    Article  CAS  Google Scholar 

  29. L. Alexander, H.P. Klug, Determination of crystallite size with the X-Ray spectrometer. J. Appl. Phys. 21(2), 137–142 (1950)

    Article  CAS  Google Scholar 

  30. S.A. Speakman (2014). Estimating crystallite size using XRD. MIT Center for Materials Science and Engineering, 03–08

  31. X. Xia, W. Wu, H. Li, B. Zheng, Y. Xue, J. Xu, X. Liu, Spray reaction prepared FA 1– x Cs x PbI 3 solid solution as a light harvester for perovskite solar cells with improved humidity stability. RSC Adv. 6(18), 14792–14798 (2016)

    Article  CAS  Google Scholar 

  32. H. Mehdi, A. Mhamdi, H. Dhifaoui, M. Matheron, S. Cros, A. Bouazizi, Improvement of the efficiency in inverted mixed halide perovskite solar cells by PCDTBT doping. J. Mater. Sci.: Mater. Electron. 31(24), 22564–22571 (2020)

    CAS  Google Scholar 

  33. M. Spalla, L. Perrin, E. Planès, M. Matheron, S. Berson, L. Flandin (2020). Influence of Chloride/Iodide Ratio in MAPbI3-xClx Perovskite Solar Devices: Case of Low Temperature Processable AZO Sub-Layer. Energies, 13(8), 1927

  34. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, T.C. Sum, Science, 342(6156), 344–347 (2013)

  35. A. Khorasani, M. Marandi, N. Taghavinia, Application of combinative TiO2nanorods and nanoparticles layer as the electron transport film in highly efficient mixed halides perovskite solar cells. Electrochim. Acta 297, 1071–1078 (2019)

    Article  CAS  Google Scholar 

  36. B.W. Park, B. Philippe, T. Gustafsson, K. Sveinbjornsson, A. Hagfeldt, E.M. Johansson, G. Boschloo, Enhanced crystallinity in organic–inorganic lead halide perovskites on mesoporous TiO2 via disorder–order phase transition. Chem. Mater. 26(15), 4466–4471 (2014)

    Article  CAS  Google Scholar 

  37. The journal of physical chemistry letters, 6(19), 3781-3786

  38. Journal of Energy Chemistry, 44, 41-50

  39. C. Fei, B. Li, R. Zhang, H. Fu, J. Tian, G. Cao, Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film. Adv. Energy. Mater. 7(9), 1602017 (2017)

    Article  Google Scholar 

  40. Y. Cai, S. Wang, M. Sun, X. Li, Y. Xiao, Mixed cations and mixed halide perovskite solar cell with lead thiocyanate additive for high efficiency and long-term moisture stability. Org. Electron. 53, 249–255 (2018)

    Article  CAS  Google Scholar 

  41. N. Kumar, H.B. Lee, S. Hwang, J.W. Kang, Large-area, green solvent spray deposited nickel oxide films for scalable fabrication of triple-cation perovskite solar cells. J. Mater. Chem. A 8(6), 3357–3368 (2020)

    Article  CAS  Google Scholar 

  42. G. Kakavelakis, K. Alexaki, E. Stratakis, E. Kymakis, Efficiency and stability enhancement of inverted perovskite solar cells via the addition of metal nanoparticles in the hole transport layer. RSC Adv. 7(21), 12998–13002 (2017)

    Article  CAS  Google Scholar 

  43. Y. Shao Jin, F. Wei, Huang et al., J. Power Sources 404, 64–72 (2018)

    Article  Google Scholar 

  44. H. Mehdi, A. Mhamdi, A. Bouazizi, Effect of perovskite precursor ratios and solvents volume on the efficiency of MAPbI3-xClx mixed halide perovskite solar cells. Mater. Sci. Semicond. Process. 109, 104915 (2020)

    Article  CAS  Google Scholar 

  45. N.D. Pham, V.T. Tiong, P. Chen, L. Wang, G.J. Wilson, J. Bell, H. Wang, Enhanced perovskite electronic properties via a modified lead (ii) chloride Lewis acid–base adduct and their effect in high-efficiency perovskite solar cells. J. Mater. Chem. A 5(10), 5195–5203 (2017)

    Article  CAS  Google Scholar 

  46. L. Zhao, D. Luo, J. Wu, Q. Hu, W. Zhang, K. Chen, Q. Gong, Adv. Func. Mater. 26(20), 3508–3514 (2016)

  47. F. Jiang, Y. Rong, H. Liu, T. Liu, L. Mao, W. Meng, Y. Zhou, Adv. Func. Mater. 26(44), 8119–8127 (2016)

  48. D.W. de Quilettes, S.M. Vorpahl, S.D. Stranks, H. Nagaoka, G.E. Eperon, M.E Ziffer, D.S Ginger, Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 348(6235), 683–686 (2015)

  49. Z.P. Wang et al., Efficient ambient-air-stable solar cells with 2d-3d heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nat. Energy 2, 17135 (2017)

    Article  CAS  Google Scholar 

  50. Z. Su, C. Wang, G. Zheng, X. Gao, Impacts of MAPbBr3 additive on crystallization kinetics of FAPbI3 perovskite for high performance solar cells. Coatings 11(5), 545 (2021)

    Article  CAS  Google Scholar 

  51. J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, J. Seo, Nature, 590(7847), 587–593 (2021)

  52. X. Yu, X. Yan, J. Xiao, Z. Ku, J. Zhong, W. Li, Y.B. Cheng, J. Chem. Phys, 153(1), 014706 (2020)

Download references

Author information

Authors and Affiliations

Authors

Contributions

HM—Conception and design of study. HM, OS—Acquisition of data. HM, OS—Analysis and/or interpretation of data. HM, AM—Drafting the manuscript. AB, HM—Revising the manuscript critically for important intellectual content.

Corresponding author

Correspondence to Hanadi Mehdi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdi, H., Selmi, O., Mhamdi, A. et al. Effect of annealing treatment of PC60BM layer on inverted perovskite solar cells. J Mater Sci: Mater Electron 33, 5351–5358 (2022). https://doi.org/10.1007/s10854-022-07730-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07730-y

Navigation