Skip to main content

Advertisement

Log in

Development of flexible supercapacitors with coplanar integrated multi-walled carbon nanotubes/textile electrode and current collectors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Textile-based supercapacitors are promising flexible energy storage device that can provide stable power supply for wearable electronic devices. Herein, solid-state textile-based coplanar supercapacitors have been prepared by utilizing the cost-effective multi-walled carbon nanotubes (MWCNTs) as integrated electrodes and current collectors. The integrated electrodes are fabricated with facile screen-printing process and show great potential of mass production. By optimizing the concentration of MWCNTs ink, porous and uniform conductive electrode network is formed on fabric substrate, which provide more active sites for electrolyte ions adsorption. The textile-based coplanar supercapacitors show great capacitive behavior and gravimetric specific capacitance of 26.4 F g−1 at scan rate of 10 mV s−1. Moreover, there is no significant change on the electrochemical performance of textile-based coplanar supercapacitor under dynamically bending with relatively high strain rate of 20% s−1, which demonstrates excellent flexibility and electrochemical stability. It provides an important strategy for the large-scale application and development of flexible supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. N. Karim, S. Afroj, S.R. Tan, P. He, A. Fernando, C. Carr, K.S. Novoselov, Scalable production of graphene-based wearable E-textiles. ACS Nano 11, 12266–12275 (2017). https://doi.org/10.1021/acsnano7b05921

    Article  CAS  Google Scholar 

  2. P.M. Pataniya, C.K. Sumesh, M. Tannarana, C.K. Zankat, G.K. Solanki, K.D. Patel, V.M. Pathak, Flexible paper based piezo-resistive sensor functionalised by 2D-WSe(2)nanosheets. Nanotechnology (2020). https://doi.org/10.1088/1361-6528/aba4cd

    Article  Google Scholar 

  3. P.M. Pataniya, S.A. Bhakhar, M. Tannarana, C. Zankat, V. Patel, G.K. Solanki, K.D. Patel, P.K. Jha, D.J. Late, C.K. Sumesh, Highly sensitive and flexible pressure sensor based on two-dimensional MoSe2 nanosheets for online wrist pulse monitoring. J. Colloid Interface Sci. 584, 495–504 (2021). https://doi.org/10.1016/j.jcis.2020.10.006

    Article  CAS  Google Scholar 

  4. E. Heo, K.Y. Choi, J. Kim, J.H. Park, H. Lee, A wearable textile antenna for wireless power transfer by magnetic resonance. Text. Res. J. 88, 913–921 (2018). https://doi.org/10.1177/0040517517690626

    Article  CAS  Google Scholar 

  5. H. Hong, J. Hu, X. Yan, UV curable conductive ink for the fabrication of textile-based conductive circuits and wearable UHF RFID tags. ACS Appl. Mater. Interfaces 11, 27318–27326 (2019). https://doi.org/10.1021/acsami.9b06432

    Article  CAS  Google Scholar 

  6. W.L. Song, L.Z. Fan, Z.L. Hou, K.L. Zhang, Y.B. Ma, M.S. Cao, A wearable microwave absorption cloth. J. Mater. Chem. C 5, 2432–2441 (2017). https://doi.org/10.1039/c6tc05577j

    Article  CAS  Google Scholar 

  7. R. Bellisle, C. Bjune, D. Newman, Ieee, Considerations for wearable sensors to monitor physical performance during spaceflight intravehicular activities, 42nd Annual International Conferences of the Ieee Engineering in Medicine and Biology Society: Enabling Innovative Technologies for Global Healthcare Embc’20, (Ieee, New York, 2020) pp. 4160-4164

  8. Y. Zhang, H.X. Mei, Y. Cao, X.H. Yan, J. Yan, H.L. Gao, H.W. Luo, S.W. Wang, X.D. Jia, L. Kachalova, J. Yang, S.C. Xue, C.G. Zhou, L.X. Wang, Y.H. Gui, Recent advances and challenges of electrode materials for flexible supercapacitors. Coord. Chem. Rev. 438, 30 (2021). https://doi.org/10.1016/j.ccr.2021.213910

    Article  CAS  Google Scholar 

  9. S. Palchoudhury, K. Ramasamy, R.K. Gupta, A. Gupta, Flexible supercapacitors: a materials perspective. Front. Mater. 5, 9 (2019). https://doi.org/10.3389/fmats.2018.00083

    Article  Google Scholar 

  10. P.C. Chen, H.T. Chen, J. Qiu, C.W. Zhou, Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 3, 594–603 (2010). https://doi.org/10.1007/s12274-010-0020-x

    Article  CAS  Google Scholar 

  11. H. Park, J.W. Kim, S.Y. Hong, G. Lee, H. Lee, C. Song, K. Keum, Y.R. Jeong, S.W. Jin, D.S. Kim, J.S. Ha, Dynamically stretchable supercapacitor for powering an integrated biosensor in an all-in-one textile system. ACS Nano 13, 10469–10480 (2019). https://doi.org/10.1021/acsnano9b04340

    Article  CAS  Google Scholar 

  12. X. Cui, J.Y. Tian, C.Y. Zhang, R. Cai, J. Ma, Z.K. Yang, Q.S. Meng, Comparative study of nanocarbon-based flexible multifunctional composite electrodes. ACS Omega 6, 2526–2541 (2021). https://doi.org/10.1021/acsomega0c04313

    Article  CAS  Google Scholar 

  13. M.C. Zhang, M.Y. Zhao, M.Q. Jian, C.Y. Wang, Af. Yu, Z. Yin, X.P. Liang, H.M. Wang, K.L. Xia, X. Liang, J.Y. Zhai, Y.Y. Zhang, Printable smart pattern for multifunctional energy-management E-textile. Matter 1, 168–179 (2019). https://doi.org/10.1016/j.matt.2019.02.003

    Article  Google Scholar 

  14. K.H. Choi, J. Yoo, C.K. Lee, S.Y. Lee, All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy Environ. Sci. 9, 2812–2821 (2016). https://doi.org/10.1039/c6ee00966b

    Article  CAS  Google Scholar 

  15. B.L. Chen, Y.Z. Jiang, X.H. Tang, Y.Y. Pan, S. Hu, Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl. Mater. Interfaces 9, 28433–28440 (2017). https://doi.org/10.1021/acsami7b06804

    Article  CAS  Google Scholar 

  16. A.M. Gaikwad, A.C. Arias, D.A. Steingart, Recent progress on printed flexible batteries: mechanical challenges, printing technologies, and future prospects. Energy Technol. 3, 305–328 (2015). https://doi.org/10.1002/ente.201402182

    Article  Google Scholar 

  17. J. Xu, H. Wu, C. Xu, H.T. Huang, L.F. Lu, G.Q. Ding, H.L. Wang, D.F. Liu, G.Z. Shen, D.D. Li, X.Y. Chen, Structural engineering for high energy and voltage output supercapacitors. Chem. Eur. J. 19, 6451–6458 (2013). https://doi.org/10.1002/chem201204571

    Article  CAS  Google Scholar 

  18. Y.Z. Zhang, Y. Wang, T. Cheng, L.Q. Yao, X.C. Li, W.Y. Lai, W. Huang, Printed supercapacitors: materials, printing and applications. Chem. Soc. Rev. 48, 3229–3264 (2019). https://doi.org/10.1039/c7cs00819h

    Article  CAS  Google Scholar 

  19. D.P. Qi, Y. Liu, Z.Y. Liu, L. Zhang, X.D. Chen, Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges. Adv. Mater. 29, 19 (2017). https://doi.org/10.1002/adma.201602802

    Article  CAS  Google Scholar 

  20. F. Bu, W.W. Zhou, Y.H. Xu, Y. Du, C. Guan, W. Huang, Recent developments of advanced micro-supercapacitors: design, fabrication and applications. NPJ Flex. Electron. 4, 16 (2020). https://doi.org/10.1038/s41528-020-00093-6

    Article  Google Scholar 

  21. J. Liang, C.Z. Jiang, W. Wu, Printed flexible supercapacitor: Ink formulation, printable electrode materials and applications. Appl. Phys. Rev. 8, 22 (2021). https://doi.org/10.1063/5.0048446

    Article  CAS  Google Scholar 

  22. T.T. Huang, W.Z. Wu, Scalable nanomanufacturing of inkjet-printed wearable energy storage devices. J. Mater. Chem. A 7, 23280–23300 (2019). https://doi.org/10.1039/c9ta05239a

    Article  CAS  Google Scholar 

  23. D.B. Liu, K. Ni, J.L. Ye, J. Xie, Y.W. Zhu, L. Song, Tailoring the structure of carbon nanomaterials toward high-end energy applications. Adv. Mater. 30, 13 (2018). https://doi.org/10.1002/adma.201802104

    Article  CAS  Google Scholar 

  24. P. Xie, W. Yuan, X.B. Liu, Y.M. Peng, Y.H. Yin, Y.S. Li, Z.P. Wu, Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Storage Mater. 36, 56–76 (2021). https://doi.org/10.1016/jensm202012011

    Article  Google Scholar 

  25. X. Wu, M.Q. Zhang, T. Song, H.Y. Mou, Z.Y. Xiang, H.S. Qi, Highly durable and flexible paper electrode with a dual fiber matrix structure for high-performance supercapacitors. ACS Appl. Mater. Interfaces 12, 13096–13106 (2020). https://doi.org/10.1021/acsami9b19347

    Article  CAS  Google Scholar 

  26. A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, C.H. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996). https://doi.org/10.1126/science2735274483

    Article  CAS  Google Scholar 

  27. Z. Liu, F. Mo, H. Li, M. Zhu, Z. Wang, G. Liang, C. Zhi, Advances in flexible and wearable energy-storage textiles. Small Methods 2, 1800124 (2018). https://doi.org/10.1002/smtd.201800124

    Article  CAS  Google Scholar 

  28. M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9, 1872–1876 (2009). https://doi.org/10.1021/nl8038579

    Article  CAS  Google Scholar 

  29. L.B. Hu, M. Pasta, F. La Mantia, L.F. Cui, S. Jeong, H.D. Deshazer, J.W. Choi, S.M. Han, Y. Cui, Stretchable, porous, and conductive energy textiles. Nano Lett. 10, 708–714 (2010). https://doi.org/10.1021/nl903949m

    Article  CAS  Google Scholar 

  30. P. Forouzandeh, V. Kumaravel, S.C. Pillai, Electrode materials for supercapacitors: a review of recent advances. Catalysts 10, 72 (2020). https://doi.org/10.3390/catal10090969

    Article  CAS  Google Scholar 

  31. T. Tao, S.G. Lu, Y. Chen, A review of advanced flexible lithium-ion batteries. Adv. Mater. Technol. (2018). https://doi.org/10.1002/admt.201700375

    Article  Google Scholar 

  32. R.S. Costa, A. Guedes, A.M. Pereira, C. Pereira, Fabrication of all-solid-state textile supercapacitors based on industrial-grade multi-walled carbon nanotubes for enhanced energy storage. J. Mater. Sci. 55, 10121–10141 (2020). https://doi.org/10.1007/s10853-020-04709-0

    Article  CAS  Google Scholar 

  33. L.H. Jiang, H. Hong, X. Yan, J.Y. Hu, Facile thermoplastic polyurethane-based multi-walled carbon nanotube ink for fabrication of screen-printed fabric electrodes of wearable e-textiles with high adhesion and resistance stability under large deformation. Text. Res. J. (2021). https://doi.org/10.1177/00405175211008613

    Article  Google Scholar 

  34. M.Y. Lin, Y.Z. Gai, D. Xiao, H.J. Tan, Y.P. Zhao, Preparation of pristine graphene paste for screen printing patterns with high conductivity. Chem. Phys. Lett. 713, 98–104 (2018). https://doi.org/10.1016/jcplett201810022

    Article  CAS  Google Scholar 

  35. S.G. Woo, S. Yoo, S.H. Lim, J.S. Yu, K. Kim, J.G. Lee, D.G. Lee, J.H. Kim, S.Y. Lee, Galvanically replaced, single-bodied lithium-ion battery fabric electrodes. Adv. Funct. Mater. 30, 9 (2020). https://doi.org/10.1002/adfm.201908633

    Article  CAS  Google Scholar 

  36. X. Li, T.L. Gu, B.Q. Wei, Dynamic and galvanic stability of stretchable supercapacitors. Nano Lett. 12, 6366–6371 (2012). https://doi.org/10.1021/nl303631e

    Article  CAS  Google Scholar 

  37. M. Pasta, F. La Mantia, L.B. Hu, H.D. Deshazer, Y. Cui, Aqueous supercapacitors on conductive cotton. Nano Res. 3, 452–458 (2010). https://doi.org/10.1007/s12274-010-0006-8

    Article  CAS  Google Scholar 

  38. T.G. Yun, M. Oh, L.B. Hu, S. Hyun, S.M. Han, Enhancement of electrochemical performance of textile based supercapacitor using mechanical pre-straining. J. Power Sources 244, 783–791 (2013). https://doi.org/10.1016/jjpowsour201302087

    Article  CAS  Google Scholar 

  39. M.S. Sadi, M.Y. Yang, L. Luo, D.S. Cheng, G.M. Cai, X. Wang, Direct screen printing of single-faced conductive cotton fabrics for strain sensing, electrical heating and color changing. Cellulose 26, 6179–6188 (2019). https://doi.org/10.1007/s10570-019-02526-6

    Article  CAS  Google Scholar 

  40. T.Q. Hao, W. Wang, D. Yu, A flexible cotton-based supercapacitor electrode with high stability prepared by multiwalled CNTs/PANI. J. Electron. Mater. 47, 4108–4115 (2018). https://doi.org/10.1007/s11664-018-6306-6

    Article  CAS  Google Scholar 

  41. J. Yun, D. Kim, G. Lee, J.S. Ha, All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes. Carbon 79, 156–164 (2014). https://doi.org/10.1016/j.carbon.2014.07.055

    Article  CAS  Google Scholar 

  42. T. Fischer, J. Ruhling, N. Wetzold, T. Zillger, T. Weissbach, T. Goschel, M. Wurfel, A. Hubler, L. Kroll, Roll-to-roll printed carbon nanotubes on textile substrates as a heating layer in fiber-reinforced epoxy composites. J. Appl. Polym. Sci. 135, 6 (2018). https://doi.org/10.1002/app.45950

    Article  CAS  Google Scholar 

  43. J.Q. Qi, Y.W. Chen, Q. Li, Y.W. Sui, Y.Z. He, Q.K. Meng, F.X. Wei, Y.J. Ren, J.L. Liu, Hierarchical NiCo layered double hydroxide on reduced graphene oxide-coated commercial conductive textile for flexible high-performance asymmetric supercapacitors. J. Power Sources (2020). https://doi.org/10.1016/j.jpowsour.2019.227342

    Article  Google Scholar 

  44. S.L. Zhang, N. Pan, S.P. Evaluation, Adv. Energy Mater. 5, 19 (2015). https://doi.org/10.1002/aenm.201401401

    Article  CAS  Google Scholar 

  45. W.M. Haynes, CRC Handbook of Chemistry and Physics, 95th edn. (Taylor and Francis, CRC Press, Boca Raton, 2014), pp. 2117–2119. https://doi.org/10.1201/b17118

    Book  Google Scholar 

  46. F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014). https://doi.org/10.1002/adma201304137

    Article  CAS  Google Scholar 

  47. M. Noked, E. Avraham, Y. Bohadana, A. Soffer, D. Aurbach, Development of anion stereoselective, activated carbon molecular sieve electrodes prepared by chemical vapor deposition. J. Phys. Chem. C 113, 7316–7321 (2009). https://doi.org/10.1021/jp811283b

    Article  CAS  Google Scholar 

  48. C.C. Wan, Y. Jiao, J. Li, Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J. Mater. Chem. A 5, 3819–3831 (2017). https://doi.org/10.1039/c6ta04844g

    Article  CAS  Google Scholar 

  49. J. Xu, D.X. Wang, Y. Yuan, W. Wei, L.L. Duan, L.X. Wang, H.F. Bao, W.L. Xu, Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Org. Electron. 24, 153–159 (2015). https://doi.org/10.1016/jorgel201505037

    Article  CAS  Google Scholar 

  50. X.L. Li, R. Liu, C.Y. Xu, Y. Bai, X.M. Zhou, Y.J. Wang, G.H. Yuan, High-performance polypyrrole/graphene/SnCl2 modified polyester textile electrodes and yarn electrodes for wearable energy storage. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201800064

    Article  Google Scholar 

  51. B.A. Mei, O. Munteshari, J. Lau, B. Dunn, L. Pilon, Physical interpretations of nyquist plots for EDLC electrodes and devices. J. Phys. Chem. C 122, 194–206 (2018). https://doi.org/10.1021/acsjpcc7b10582

    Article  CAS  Google Scholar 

  52. H.Y. Gan, C.H. Chua, S.M. Chan, B.K. Lok, Performance Characterization of Flexible Printed Supercapacitors (IEEE, New York, 2009). https://doi.org/10.1109/eptc.2009.5416532

    Book  Google Scholar 

  53. F. Markoulidis, C. Lei, C. Lekakou, Fabrication of high-performance supercapacitors based on transversely oriented carbon nanotubes. Appl. Phys. A: Mater. Sci. Process. 111, 227–236 (2013). https://doi.org/10.1007/s00339-012-7471-8

    Article  CAS  Google Scholar 

  54. H.H. Zhang, Y. Qiao, Z.S. Lu, Fully printed ultraflexible supercapacitor supported by a single-textile substrate. ACS Appl. Mater. Interfaces 8, 32317–32323 (2016). https://doi.org/10.1021/acsami6b11172

    Article  CAS  Google Scholar 

  55. H.L. Dai, G.X. Zhang, D. Rawach, C.Y. Fu, C. Wang, X.H. Liu, M. Dubois, C. Lai, S.H. Sun, Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives. Energy Storage Mater. 34, 320–355 (2021). https://doi.org/10.1016/jensm202009018

    Article  Google Scholar 

  56. S.Q. Li, Z.Y. Fan, Nitrogen-doped carbon mesh from pyrolysis of cotton in ammonia as binder-free electrodes of supercapacitors. Microporous Mesoporous Mater. 274, 313–317 (2019). https://doi.org/10.1016/jmicromeso201809002

    Article  CAS  Google Scholar 

  57. L. Liu, Q.Y. Tian, W.J. Yao, M.X. Li, Y.W. Li, W. Wu, All-printed ultraflexible and stretchable asymmetric in-plane solid-state supercapacitors (ASCs) for wearable electronics. J. Power Sources 397, 59–67 (2018). https://doi.org/10.1016/jjpowsour201807013

    Article  CAS  Google Scholar 

  58. X. Pu, L.X. Li, H.Q. Song, C.H. Du, Z.F. Zhao, C.Y. Jiang, G.Z. Cao, W.G. Hu, Z.L. Wang, A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27, 2472–2478 (2015). https://doi.org/10.1002/adma201500311

    Article  CAS  Google Scholar 

  59. L.L. Xu, M.X. Guo, S. Liu, S.W. Bian, Graphene/cotton composite fabrics as flexible electrode materials for electrochemical capacitors. RSC Adv. 5, 25244–25249 (2015). https://doi.org/10.1039/c4ra16063k

    Article  CAS  Google Scholar 

  60. N. Keawploy, R. Venkatkarthick, P. Wangyao, X.Y. Zhang, R.P. Liu, J.Q. Qin, Eco-friendly conductive cotton-based textile electrodes using silver- and carbon-coated fabrics for advanced flexible supercapacitors. Energy Fuels 34, 8977–8986 (2020). https://doi.org/10.1021/acs.energyfuels.0c01419

    Article  CAS  Google Scholar 

  61. L.Y. Yuan, X.H. Lu, X. Xiao, T. Zhai, J.J. Dai, F.C. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, C.G. Hu, Y.X. Tong, J. Zhou, Z.L. Wang, Flexible solid-state supercapacitors based on carbon nanoparticles/mno2 nanorods hybrid structure. ACS Nano 6, 656–661 (2012). https://doi.org/10.1021/nn2041279

    Article  CAS  Google Scholar 

  62. T.L. Gu, B.Q. Wei, Fast and stable redox reactions of MnO2/CNT hybrid electrodes for dynamically stretchable pseudocapacitors. Nanoscale 7, 11626–11632 (2015). https://doi.org/10.1039/c5nr02310f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Science Foundation of Shanghai (20ZR1400500) and the Fundamental Research Funds for the Central Universities (2232021G-01).

Author information

Authors and Affiliations

Authors

Contributions

LJ: Methodology, validation, formal analysis, investigation, writing—original draft, writing—review and editing. HH: Investigation, methodology, writing—review and editing. JH: Investigation, formal analysis, supervision, writing—review and editing. XY: Investigation, supervision.

Corresponding authors

Correspondence to Jiyong Hu or Xiong Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Hong, H., Hu, J. et al. Development of flexible supercapacitors with coplanar integrated multi-walled carbon nanotubes/textile electrode and current collectors. J Mater Sci: Mater Electron 33, 5297–5310 (2022). https://doi.org/10.1007/s10854-022-07718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07718-8

Navigation