Skip to main content
Log in

A review of recent progress in modified metal–organic frameworks as photocatalysts

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is well known that metal–organic frameworks (MOFs) have aroused the interest of many researchers in the field of photocatalysis. And MOFs and its derivatives have abundant tunable chemical components, uniformly distributed active sites, and ordered micro/mesoporous structures. So far, MOFs have rapidly burgeoned as late-model photocatalysts due to their excellent intrinsic characteristics, such as ordered porous structure and large surface area. Better yet, by adjusting the combination with complex/metal catalysts or organic metal/linker clusters, not only the reactant activation and charge separation but also the reactant or light absorption can be greatly promoted, resulting in superior photocatalytic performance. Nevertheless, the bulk MOFs as photocatalysts have a wide band gap and high electron–hole recombination, which can only capture UV light and restrict their further development. Therefore, it is necessary to develop efficient photocatalysts over MOFs and MOFs-based derivatives with visible-light-driven activity by various strategies. In this paper, the progress of various modification strategies of MOFs is reviewed, including modifying metal center or organic linker, combining with semiconductors and constructing 2D metal–organic frameworks (2D-MOFs) nanosheets, three-dimensionally ordered macro-microporous MOF (hierarchical porous MOFs). The above-mentioned modified MOFs strategy can further promote visible light response, improve the effective separation and transfer of electron holes, and has good recyclability. Furthermore, the existing challenges and the development prospects of MOFs in the field of photocatalysis were also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data are available on request to the corresponding author.

References

  1. X. Gong, Y.F. Shu, Z. Jiang, L.X. Lu, X.H. Xu, C. Wang, H.X. Deng, Metal-organic frameworks for the exploitation of distance between active sites in efficient photocatalysis. Angew. Chem. Int. Ed. 59, 5326–5331 (2020)

    Article  CAS  Google Scholar 

  2. Y.J. Zhao, Y. Liu, Z.Z. Wang, Y.R. Ma, Y.J. Zhou, X.F. Shi, Q.Y. Wu, X. Wang, M.W. Shao, H. Huang, Y. Liu, Z.H. Kang, Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production. Appl. Catal. B: Environ. 289, 120035 (2021)

    Article  CAS  Google Scholar 

  3. H. Huang, Y. Zhao, Y.M. Bai, F.M. Li, Y. Zhang, Y. Chen, Conductive metal-organic frameworks with extra metallic sites as an efficient electrocatalyst for the hydrogen evolution reaction. Adv. Sci. 7, 2000012 (2020)

    Article  CAS  Google Scholar 

  4. K. Sun, M. Liu, J.Z. Pei, D.D. Li, C.M. Ding, K.F. Wu, H.L. Jiang, Incorporating transition-metal phosphides into metal-organic frameworks for enhanced photocatalysis. Angew. Chem. Int. Ed. 59, 22749–22755 (2020)

    Article  CAS  Google Scholar 

  5. Y.P. Zhu, J. Yin, E. Abou-Hamad, X.K. Liu, W. Chen, T. Yao, O.F. Mohammed, H.N. Alshareef, Highly stable phosphonate-based MOFs with engineered bandgaps for efficient photocatalytic hydrogen production. Adv. Mater. 32, 1906368 (2020)

    Article  CAS  Google Scholar 

  6. Y.H. Pi, X.Y. Feng, Y. Song, Z.W. Xu, Z. Li, W.B. Lin, Metal-organic frameworks integrate Cu photosensitizers and secondary building unit-supported Fe catalysts for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 142, 10302–10307 (2020)

    Article  CAS  Google Scholar 

  7. J.J. Zhang, T.Y. Bai, H. Huang, M.H. Yu, X.B. Fan, Z. Chang, X.H. Bu, Metal-organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting. Adv. Mater. 32, 2004747 (2020)

    Article  CAS  Google Scholar 

  8. T. Zhang, W. Lin, Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982–5993 (2014)

    Article  CAS  Google Scholar 

  9. S.B. Wang, X.C. Wang, Multifunctional metal-organic frameworks for photocatalysis. Small 11, 3097–3112 (2015)

    Article  CAS  Google Scholar 

  10. F. Xamena, O. Casanova, T.R. Galiasso, H. Garcia, A. Corma, Metal organic frameworks (MOFs) as catalysts: a combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation. J. Catal. 255, 220–227 (2008)

    Article  Google Scholar 

  11. M.J. Wang, X. Dong, Z.D. Meng, Z.W. Hu, Y.G. Lin, C.K. Peng, H.S. Wang, C.W. Pao, S.Y. Ding, Y.Y. Li, Q. Shao, X.Q. Huang, An efficient interfacial synthesis of two-dimensional metal-organic framework nanosheets for electrochemical hydrogen peroxide production. Angew. Chem. Int. Ed. 60, 11190–11195 (2021)

    Article  CAS  Google Scholar 

  12. Y. Xu, M.Y. Liu, M.Z. Wang, T.L. Ren, K.L. Ren, Z.Q. Wang, X.N. Li, L. Wang, H.J. Wang, Methanol electroreforming coupled to green hydrogen production over bifunctional NiIr-based metal-organic framework nanosheet array. Appl. Catal. B: Environ. 300, 120753 (2022)

    Article  CAS  Google Scholar 

  13. J. Gao, J. Miao, P.Z. Li, W. Teng, L. Yang, Y. Zhao, A p-type Ti (IV)-based metal-organic framework with visible-light photo-response. Chem. Commun. 50, 3786–3788 (2014)

    Article  CAS  Google Scholar 

  14. F. Xamena, A. Corma, H. Garcia, Applications for metal−organic frameworks (MOFs) as quantum dot semiconductors. J. Phys. Chem. C 111, 80–85 (2007)

    Article  Google Scholar 

  15. L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, CdS-decorated UiO-66(NH2) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. J. Mater. Chem. A 1, 11473–11482 (2013)

    Article  CAS  Google Scholar 

  16. J. He, J. Wang, Y. Chen, J. Zhang, D. Duan, Y. Wang, A dye-sensitized Pt@UiO-66 (Zr) metal–organic framework for visible-light photocatalytic hydrogen production. Chem. Commun. 50, 7063–7066 (2014)

    Article  CAS  Google Scholar 

  17. Y. Yuan, L. Yin, S. Cao, G. Xu, C. Li, C. Xue, Improving photocatalytic hydrogen production of metal-organic framework UiO-66 octahedrons by dye-sensitization. Appl. Catal. B 168–169, 572–576 (2015)

    Article  Google Scholar 

  18. G.S. Cláudia, I. Luz, I. Llabrés, F.X. Xamena, A. Corma, H. García, Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. Chem. Eur. J. 16, 11133–11138 (2010)

    Article  Google Scholar 

  19. Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 51, 3364–3367 (2012)

    Article  CAS  Google Scholar 

  20. D. Guo, R. Wen, M. Liu, H. Guo, J. Chen, W. Weng, Facile fabrication of g-C3N4/MIL-53(Al) composite with enhanced photocatalytic activities under visible-light irradiation. Appl. Organomet. Chem. 29, 690–697 (2015)

    Article  CAS  Google Scholar 

  21. J. Guo, Y. Wan, Y. Zhu, M. Zhao, Z. Tang, Advanced photocatalysts based on metal nanoparticle/metalorganic framework composites. Nano Res. 20, 2394–2402 (2020)

    Google Scholar 

  22. K. Rui, G. Zhao, Y. Chen, Y. Lin, Q. Zhou, J. Chen, Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis. Adv. Funct. Mater. 28, 1801554 (2018)

    Article  Google Scholar 

  23. Q. Zuo, T.T. Liu, C.S. Chen, Y. Ji, X.Q. Gong, Y.Y. Mai, Y.F. Zhou, Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem. Int. Ed. 58, 10198–10203 (2019)

    Article  CAS  Google Scholar 

  24. D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, H.Y. Shao, M. Dincă, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017)

    Article  CAS  Google Scholar 

  25. X. Zhao, P. Pachfule, S. Li, T. Langenhahn, M. Ye, C. Schlesiger, Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 141, 6623–6630 (2019)

    Article  CAS  Google Scholar 

  26. W. Zhang, Z. Jiang, L. Hao, Three-dimensional ordered macroporous nano-architecture and its enhancing effects on Raman detection sensitivity for Eosin Y molecules. Mater. Des. 119, 456–463 (2017)

    Article  CAS  Google Scholar 

  27. J. Ye, J. He, S. Wang, Nickel-loaded black TiO2 with inverse opal structure for photocatalytic reduction of CO2 under visible light. Sep. Purif. Technol. 220, 8–15 (2019)

    Article  CAS  Google Scholar 

  28. S. Liu, L. Zhou, J. Zhang, Controllable synthesis of inverse opal TiO2-x photonic crystals and their photoelectric properties. Chem. Asian J. 14, 322–327 (2019)

    Article  CAS  Google Scholar 

  29. M. Kim, W. Zhao, M. Tsapatsis, A. Stein, Three-Dimensionally ordered macroporous mixed metal oxide as an indicator for monitoring the stability of ZIF-8. Chem. Mater. 32, 3850–3859 (2020)

    Article  CAS  Google Scholar 

  30. J. Liu, H. Zhao, M. Wu, J. Liu, H. Zhao, M. Wu, Slow photons for photocatalysis and photovoltaics. Adv. Mater. 29, 1605349 (2017)

    Article  Google Scholar 

  31. X. Zhang, S. John, Enhanced photocatalysis by light-trapping optimization in inverse opals. J. Mater. Chem. A 9, 18974–18986 (2020)

    Article  Google Scholar 

  32. Y. Tian, J.R. Lhermitte, L. Bai, Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nat. Mater. 19, 789–796 (2020)

    Article  CAS  Google Scholar 

  33. Z. Liang, C. Qu, D. Xia, R. Zou, Q. Xu, Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem. Int. Ed. 57, 9604–9633 (2018)

    Article  CAS  Google Scholar 

  34. T.W. Goh, C. Xiao, R.V. Maligal-Ganesh, X. Li, W. Huang, Utilizing mixed-linker zirconium based metal-organic frameworks to enhance the visible light photocatalytic oxidation of alcohol. Chem. Eng. Sci. 124, 45–51 (2015)

    Article  CAS  Google Scholar 

  35. E. Flage-Larsen, A. Royset, J.H. Cavka, K. Thorshaug, Band gap modulations in UiO metal-organic frameworks. J. Phys. Chem. C 117, 20610–20616 (2013)

    Article  CAS  Google Scholar 

  36. Q. Wang, Q. Gao, A.M. Al-Enizi, A. Nafadyc, S. Ma, Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorg. Chem. Front. 7, 300–339 (2020)

    Article  CAS  Google Scholar 

  37. S.Y. Han, D.L. Pan, H. Chen, X. Bu, Y. Gao, H. Gao, A methylthio-functionaliz ed-MOF photocatalyst with high performance for visible-light-driven H2 evolution. Angew. Chem. Int. Ed. 57, 9864–9869 (2018)

    Article  CAS  Google Scholar 

  38. C. Xu, Y. Pan, G. Wan, Turning on visible-light photocatalytic C-H oxidation over metal-organic frameworks by introducing metal-to-cluster charge transfer. J. Am. Chem. Soc. 141, 19110–19117 (2019)

    Article  CAS  Google Scholar 

  39. L. Shi, T. Wang, H.B. Zhang, K. Chang, J.H. Ye, Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Adv. Funct. Mater. 25, 5360–5367 (2015)

    Article  CAS  Google Scholar 

  40. C.M. Wolff, P.D. Frischmann, M. Schulze, B.J. Bohn, R. Wein, P. Livadas, M.T. Carlson, F. Jäckel, J. Feldmann, F. Würthner, J.K. Stolarczyk, All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 3, 862–869 (2018)

    Article  CAS  Google Scholar 

  41. X. Zhang, Z. Chen, Y. Luo, X. Han, Q. Jiang, T. Zhou, H. Yang, J. Hu, Construction of NH2-MIL-125(Ti)/CdS Z-scheme heterojunction for efficient photocatalytic H2 evolution. J. Hazard. Mater. 405, 124128 (2021)

    Article  CAS  Google Scholar 

  42. M. Zhao, Q. Lu, Q. Ma, H. Zhang, Two-dimensional metal-organic framework nanosheets. Small Methods 1, 1600030 (2017)

    Article  Google Scholar 

  43. M. Zhao, Y. Huang, Y. Peng, Z. Huang, Q. Ma, H. Zhang, Two-dimensional metal-organic framework nanosheets: synthesis and applications. Chem. Soc. Rev. 47, 6267–6295 (2018)

    Article  CAS  Google Scholar 

  44. Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014)

    Article  CAS  Google Scholar 

  45. T. Kambe, R. Sakamoto, K. Hoshiko, K. Takada, M. Miyachi, J.H. Ryu, π-Conjugated nickel bis (dithiolene) complex nanosheets. J. Am. Chem. Soc. 135, 2462–2465 (2013)

    Article  CAS  Google Scholar 

  46. T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015)

    Article  CAS  Google Scholar 

  47. M. Zhao, Y. Wang, Q. Ma, Y. Huang, X. Zhang, J. Ping, Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 27, 7372–7378 (2015)

    Article  CAS  Google Scholar 

  48. J. Liu, L. Chen, H. Cui, J.Y. Zhang, L. Zhang, C.Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011–6061 (2014)

    Article  CAS  Google Scholar 

  49. S.C. Junggeburth, L. Diehl, S. Werner, V. Duppel, W. Sigle, B.V. Lotsch, Ultrathin 2D coordination polymer nanosheets by surfactant-mediated synthesis. J. Am. Chem. Soc. 135, 6157–6164 (2013)

    Article  CAS  Google Scholar 

  50. L. Cao, Z. Lin, F. Peng, W. Wang, R. Huang, C. Wang, Self-supporting metal-organic layers as single-site solid catalysts. Angew. Chem. Int. Ed. 128, 5046–5050 (2016)

    Article  Google Scholar 

  51. S. Zhao, Y. Wang, J. Dong, C.T. He, H. Yin, P. An, Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1, 16184 (2016)

    Article  CAS  Google Scholar 

  52. Y. Ding, Y.P. Chen, X. Zhang, L. Chen, Z. Dong, H.L. Jiang, Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent. J. Am. Chem. Soc. 139, 9136–9139 (2017)

    Article  CAS  Google Scholar 

  53. F. Cao, M. Zhao, Y. Yu, B. Chen, Y. Huang, J. Yang, Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J. Am. Chem. Soc. 138, 6924–6297 (2016)

    Article  CAS  Google Scholar 

  54. H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018)

    Article  CAS  Google Scholar 

  55. D. Zhu, C. Guo, J. Liu, L. Wang, Y. Du, S.Z. Qiao, Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chem. Commun. 53, 10906 (2017)

    Article  CAS  Google Scholar 

  56. H.H. Hu, Z.Y. Wang, L.Y. Cao, L.Z. Zeng, C.K. Zhang, W.B. Lin, C. Wang, Metal-organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 13, 358–366 (2021)

    Article  CAS  Google Scholar 

  57. J.R. Ran, J.T. Qu, H.P. Zhang, T. Wen, H.L. Wang, S.M. Chen, L. Song, X.L. Zhang, L.Q. Jing, R.K. Zheng, S.Z. Qiao, 2D metal organic framework nanosheet: A universal platform promoting highly efficient visible-light-induced hydrogen production. Adv. Energy Mater. 9, 1803402 (2019)

    Article  Google Scholar 

  58. Y. Xiao, Y. Qi, X. Wang, X. Wang, F. Zhang, C. Li, Visible-light-responsive 2D cadmium-organic framework single crystals with dual functions of water reduction and oxidation. Adv. Mater. 30, 1803401 (2018)

    Article  Google Scholar 

  59. Y. Quan, W. Shi, Y. Song, X. Jiang, C. Wang, W. Lin, Bifunctional metal-organic layer with organic dyes and iron centers for synergistic photoredox catalysis. J. Am. Chem. Soc. 143, 3075–3080 (2021)

    Article  CAS  Google Scholar 

  60. Y.T. Wang, C.S. Peng, T. Jiang, J. Zhang, Z. Jiang, X.G. Li, Construction of defect-engineered three dimensionally ordered macroporous WO3 for efficient photocatalytic water oxidation reaction. J. Mater. Chem. A 9, 3036–3043 (2021)

    Article  CAS  Google Scholar 

  61. W. Zhang, Z. Jiang, L. Hao, G. Lu, Y. Ni, C. Lu, Z. Xu, Three-dimensional ordered macroporous nano-architecture and its enhancing effects on Raman detection sensitivity for Eosin Y molecules. Mater. Des. 119, 456–463 (2017)

    Article  CAS  Google Scholar 

  62. J.I.L. Chen, E.L. Naazia Ebrahim, A. Ozin Geoffrey, Synergy of slow photon and chemically amplified photochemistry in platinum nanocluster-loaded inverse titania opals. J. Am. Chem. Soc. 130, 5420–5421 (2008)

    Article  CAS  Google Scholar 

  63. Q. Yang, C.C. Yang, C.H. Lin, H.L. Jiang, Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn Atoms for efficient carbon dioxide conversion. Angew. Chem. Int. Ed. 58, 3511–3515 (2019)

    Article  CAS  Google Scholar 

  64. Y. Wei, J. Jiao, Z. Zhao, W. Zhong, J. Li, J. Liu, 3D ordered macroporous TiO2-supported Pt@CdS core-shell nanoparticles: design, synthesis and efficient photocatalytic conversion of CO2 with water to methane. J. Mater. Chem. A 3, 11074–11085 (2015)

    Article  CAS  Google Scholar 

  65. S. Wu, X. Tan, J. Lei, H. Chen, L. Wang, J. Zhang, Ga-doped and Pt-loaded porous TiO2-SiO2 for photocatalytic nonoxidative coupling of methane. J. Am. Chem. Soc. 141, 6592–6600 (2019)

    Article  CAS  Google Scholar 

  66. B. Lin, G. Yang, L. Wang, Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C3N4 nanosphere arrays for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 58, 4587–4591 (2019)

    Article  CAS  Google Scholar 

  67. Y. Oh, W. Yang, J. Tan, H. Lee, J. Park, J. Moon, Boosting visible light harvesting in p-type ternary oxides for solar-to-hydrogen conversion using inverse opal structure. Adv. Funct. Mater. 29, 1900194 (2019)

    Article  Google Scholar 

  68. Y. Hu, X. Xu, B. Zheng, S. Hou, P. Wang, W. Chen, Functional macro-microporous metal-organic frameworks for improving the catalytic performance. Small Methods 3, 1800547 (2019)

    Article  Google Scholar 

  69. W. Ye, S. Chen, Y. Lin, L. Yang, S. Chen, X. Zheng, Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem 5, 3006–3007 (2019)

    Article  Google Scholar 

  70. H. Yang, X. Chen, W.T. Chen, Q. Wang, N.C. Cuello, A. Nafady, Tunable synthesis of hollow metal-nitrogencarbon capsules for efficient oxygen reduction catalysis in proton exchange membrane fuel cells. ACS Nano 13, 8087–8098 (2019)

    Article  CAS  Google Scholar 

  71. W. Ren, X. Tan, W. Yang, C. Jia, S. Xu, K. Wang, Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 58, 6972–6976 (2019)

    Article  CAS  Google Scholar 

  72. Y. Deng, B. Chi, J. Li, G. Wang, L. Zheng, X. Shi, Atomic Fe-doped MOF-derived carbon polyhedrons with high active-center density and ultra-high performance toward PEM fuel cells. Adv. Energy Mater. 9, 1802856 (2019)

    Article  Google Scholar 

  73. K. Shen, L. Zhang, X. Chen, L. Liu, D. Zhang, Y. Han, Ordered macro-microporous metal-organic framework single crystals. Science 359, 206–210 (2018)

    Article  CAS  Google Scholar 

  74. F.L. Wang, L.G. Xiao, J.M. Chen, L.Y. Chen, R.Q. Fang, Y.W. Li, Regulating the electronic structure and water adsorption capability by constructing carbon-doped CuO hollow spheres for efficient photocatalytic hydrogen evolution. Chemsuschem 13, 5711–5721 (2020)

    Article  CAS  Google Scholar 

  75. H.L. Yang, J.Q. Tang, Y. Luo, X.Q. Zhan, Z. Liang, L. Jiang, H.L. Hou, W.Y. Yang, MOFs-derived fusiform In2O3 mesoporous nanorods anchored with ultrafine CdZnS nanoparticles for boosting visible-light photocatalytic hydrogen evolution. Small 17, 2102307 (2021)

    Article  CAS  Google Scholar 

  76. S.H. Wu, X.F. Xing, D. Wang, Highly ordered hierarchically macroporous MIL-125 with high specific surface area for photocatalytic CO2 fixation. ACS Sustain. Chem. Eng. 8, 148–153 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundations of China (Nos. 21876015 and 21703019), the Natural Science Foundation of Jiangsu Higher Education Institutions (No. 20KJA50007), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX21_1216).

Author information

Authors and Affiliations

Authors

Contributions

XZ: Investigation, Methodology, and Writing—original draft. ZL: Resources and Methodology. YZ: Supervision. MZ: Writing—review & editing. SX: Methodology and Investigation. ZL: Project administration and Funding acquisition.

Corresponding authors

Correspondence to Song Xu or Zhongyu Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Lu, Z., Zhang, Y. et al. A review of recent progress in modified metal–organic frameworks as photocatalysts. J Mater Sci: Mater Electron 33, 4737–4754 (2022). https://doi.org/10.1007/s10854-022-07717-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07717-9

Navigation