Skip to main content
Log in

Low temperature synthesis, dielectric and electrical characteristics of Bi2/3Cu3−xNixTi4O12(where x = 0.05, 0.1, and 0.2) ceramics for the dielectric and electrical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have investigated a low-temperature chemical route of the synthesis and measured the dielectric, electrical and morphological characteristics of the Ni-doped BCTO ceramic (Bi2/3Cu3−xNixTi4O12 where x = 0.05, 0.1, and 0.2) compound. The synthesized material was heated at 1123 K for 8 h in this research study. The uniform phase formation of the material was confirmed by the X-ray diffraction pattern, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy studies. The dielectric constant was observed to be 6902 at 470 K and 100 Hz. The tangent loss (tan \(\delta\)) value for BCNTO-0.1 ceramic was obtained to be 0.08 at 310 K and 10 kHz. X-ray photoelectron spectroscopy was used to confirm the ceramic’s oxidation condition. The electrical conductivity of Bi2/3Cu3−xNixTi4O12 (where x =  0.05, 0.1, and 0.2) ceramics fluctuate with temperature in the range of 300–500 K, satisfying the Arrhenius equation and producing a nearly single slope. The calculated specific capacitances of BCNTO-0.05, BCNTO-0.1, and BCNTO-0.2 based electrodes are 71 F/g, 38 F/g, and 32 F/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. X. Wu, X. Chen, Q.M. Zhang, D.Q. Tan, Energy Storage Mater. 44, 29–47 (2021)

    Article  Google Scholar 

  2. Y. Zhou, Q. Wang, J. Appl. Phys. 127(24), 240902 (2020)

    Article  Google Scholar 

  3. H. Zhang, T. Wei, Q. Zhang, W. Ma, P. Fan, D. Salamon, S.T. Zhang, B. Nan, H. Tan, Z.G. Ye, J. Mater. Chem. C 8, 16648–16667 (2020)

    Article  CAS  Google Scholar 

  4. M.H. Ghozza, I.S. Yahia, S.I. El-Dek, Mater. Res. Exp. 7(5), 056104 (2020)

    Article  CAS  Google Scholar 

  5. B. Jiang, J. Iocozzia, L. Zhao, H. Zhang, Y.W. Harn, Y. Chen, Z. Lin, Chem. Soc. Rev. 48, 1194–1228 (2019)

    Article  Google Scholar 

  6. K. Yao, S. Chen, S.C. Lai, Y.M. Yousry, Adv. Sci. 2103842 (2021)

  7. P. Kumonsa, N. Chanlek, M. Takesada, P. Srepusharawoot, P. Thongbai, Eng. Appl. Sci. Res. 48(6), 766–772 (2021)

    Google Scholar 

  8. Z. Liu, Z. Yang, J. Electron. Mater. .46(10), 6175–6187 (2017)

    Article  Google Scholar 

  9. W. Tuichai, S. Danwittayakul, N. Chanlek, M. Akesada, A. Pengpad, P. Srepusharawoot, P. Thongbai, ACS Omega 6(3), 1901–1910 (2021)

    Article  CAS  Google Scholar 

  10. J. Jumpatam, B. Putasaeng, N. Chanlek, J. Boonlakhorn, P. Thongbai, N. Phromviyo, P. Chindaprasirt, Mater. Res. Bull. 133, 111043 (2021)

  11. S. Rani, N. Ahlawat, R. Punia, K.M. Sangwan, P. Khandelwal, Ceram. Int. 44(18), 23125–23136 (2018)

    Article  CAS  Google Scholar 

  12. J. Wang, Z. Lu, T. Deng, T.C. Zhong, J. Eur. Ceram. Soc. 38(10), 3505–3511 (2018)

    Article  CAS  Google Scholar 

  13. S. Said, S. Didry, M.El Amrani, C. Autret-Lambert, A. Megriche, J. Alloys Compd. 765, 927–935 (2018)

    Article  CAS  Google Scholar 

  14. Y. Wang, X. Huang, T. Li, L. Li, X. Guo, P. Jiang, Chem. Mater. 31(7), 2212–2240 (2019)

    Article  CAS  Google Scholar 

  15. S.Sharma, M.M. Singh, K.D. Mandal, New J. Chem. 41(14), 6359–6370 (2017)

    Article  Google Scholar 

  16. G. Riquet, S. Marinel, Y. Bréard, C. Harnois, Ceram. Int. 45(7), 9185–9191 (2019)

    Article  CAS  Google Scholar 

  17. V.S. Rai, S. Pandey, V. Kumar, M.K. Verma, A. Kumar, S. Singh, D. Prajapati, K.D. Mandal, J. Mater. Sci.: Mater. Electron. 32(6), 7671–7680 (2021)

    CAS  Google Scholar 

  18. D. Prajapati, V.S. Rai, S. Pandey, V. Kumar, M.K. Verma, A. Kumar, S. Singh, K. Sahoo, K.D. Mandal, J. Mater. Sci.: Mater. Electron. 32(22), 26371–26383 (2021)

    CAS  Google Scholar 

  19. M. Sahu, R.N.P. Choudhary, Trans. Electr. Electron. Mater. 20(1), 16–23 (2019)

    Article  Google Scholar 

  20. F. Gaâbel, M. Khlifi, N. Hamdaoui, L. Beji, K. Taibi, J. Dhahri, J. Mater. Sci.: Mater. Electron. 30(16), 14823–14833 (2019)

    Google Scholar 

  21. S. Nagamuthu, Y. Zhang, Y. Xu, J. Sun, F. Zaman, D.K. Denis, L. Hou, C. Yuan, J. Mater. Chem. A (2021)

  22. J. Mohammed, R. Bhargava, S. Khan, S. Mishra, S.K. Godara, A.K. Srivastava, Mater. Chem. Phys. 248, 122933 (2020)

    Article  Google Scholar 

  23. A. Ghafoor, I. Bibi, I.S. Ata, F. Majid, S. Kamal, M. Iqbal, H. Li, D. Pletemeirer, W.-G. Drossel, N. Alwadai, J. Mol. Liq. 343, 117581 (2021)

    Article  CAS  Google Scholar 

  24. V. Kumar, S. Pandey, A. Kumar, M.K. Verma, S. Singh, V.S. Rai, D. Prajapati, T. Das, A. Sharma, C.L. Prajapat, A. Gangwar, J. Mater. Res. Technol. 9(6), 12936–12945 (2020)

    Article  Google Scholar 

  25. C.S. Han, H.R. Choi, H.J. Choi, Y.S. Cho, Chem. Mater. 29(14), 5915–5921 (2017)

    Article  CAS  Google Scholar 

  26. M. Javed, A.A. Khan, J. Kazmi, M.A. Mohamed, M.N. Khan, M. Hussain, R. Bilkees, Mater. Res. Bull. 138, 111242 (2021)

    Article  CAS  Google Scholar 

  27. S.B.R.S. Adnan, N.S. Mohamed, J. Eur. Ceram. Soc. 38(13), 4483–4487 (2018)

    Article  Google Scholar 

  28. T. Das, B. Verma, Int. J.Energy Res. 44(2), 934–949 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Vishnu Shankar Rai thanks the Head, Department of Chemistry, IIT (BHU) Varanasi, and DST- INSPIRE for the financial support as a fellowship. The authors are thankful to the Incharge, CIFC, IIT(BHU) Varanasi for providing TEM, XPS, and SEM facilities used for the characterization.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. D. Mandal.

Ethics declarations

Conflict of interest

The authors declare that there is no argument among them regarding the publication of this article. The authors have no relevant financial or non-financial interests to disclose

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, V.S., Prajapati, D., Kumar, V. et al. Low temperature synthesis, dielectric and electrical characteristics of Bi2/3Cu3−xNixTi4O12(where x = 0.05, 0.1, and 0.2) ceramics for the dielectric and electrical properties. J Mater Sci: Mater Electron 33, 5273–5282 (2022). https://doi.org/10.1007/s10854-022-07715-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07715-x

Navigation