Skip to main content
Log in

Heterojunction diode application of yttrium ıron oxide (Y3Fe5O12)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the Cr/Y3Fe5O12/p-Si/Al heterojunction diode was fabricated with coating the Y3Fe5O12 interface material on p-Si using spin coating method. The role of Y3Fe5O12 material on the current conduction characteristics of diodes was investigated. It has been determined that this material improves the basic diode parameters of the diode. This is due to the electrical conductivity of Y3Fe5O12 material. The current–voltage (I–V) measurements of this diode were analyzed for various temperature values. Basic diode parameters such as barrier height (Φb), series resistance (Rs) and ideality factor (n) values are strongly dependent on temperature, implying the presence of Schottky barrier inhomogeneities. While the Φb value increases with increasing temperature, the n and the Rs values decrease. The effective Richardson constant of the diode was calculated as A* = 0.000028 A/K2 cm2. This value is smaller than the theoretical value (A* = 32 A/K2 cm2 for p-Si). This is attributed to the inhomogeneous nature of the potential barrier. Also, capacitance–voltage (C–V) measurements Cr/Y3Fe5O12/p-Si/Al heterojunction were analyzed for different frequency values. It has been determined that the capacity decreases with increasing frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S.O. Tan, J. Polytec. 21(4), 977–989 (2018)

    Google Scholar 

  2. A. Türüt, Turk. J. Phys. 44, 302–347 (2020)

    Google Scholar 

  3. S. Mahato, J. Puigdollers, Phys. Phy. Condens. Matter 530, 327–335 (2018)

    CAS  Google Scholar 

  4. Ö. Metin, Ş Aydoğan, K. Meral, J. Alloy. Compd. 585, 681–688 (2014)

    CAS  Google Scholar 

  5. M. Kaur, M.K. Ubhi, J.K. Grewal, D. Singh, J. Phys. Chem. Solids 154, 110060 (2021)

    CAS  Google Scholar 

  6. A.A. Ismail, Appl. Catal. Environ. 58, 115–121 (2005)

    CAS  Google Scholar 

  7. E. Ustun, S.C. Onbas, S.K. Celik, M.C. Ayvaz, N. Sahin, Biointerface Res. Appl. Chem. 12(2), 2108–2116 (2022)

    Google Scholar 

  8. L. Wu, J.C. Yu, L. Zhang, X. Wang, S. Li, J. Solid State Chem. 177, 3666–3674 (2004)

    CAS  Google Scholar 

  9. W. Zhang, Y. Ling, Y. Rao, R. Peng, Y. Lu, J. Power Sources 213, 140–144 (2012)

    Google Scholar 

  10. J.A. Razak, AIP Conf. Proc. 1482, 633 (2012)

    Google Scholar 

  11. Y. Nakat, H. Uetsuhara, F. Yahiro, T. Okada, M. Maeda, K. Ueda, S. Higuchi, IEEE. Trans. Magnet. 37(4), 451–2453 (2001). https://doi.org/10.1109/20.951200

    Article  Google Scholar 

  12. F.S. Al-Hazmi, A.A. Al-Ghamdi, L.M. Bronstein, L.S. Memesh, F.S. Shokr, M. Hafez, Ceram. Int. 43, 8133–8138 (2017)

    CAS  Google Scholar 

  13. J.C. Chen, C.C. Hu, Quantitative analysis of YIG. J. Cryst. Growth 249, 245–250 (2003)

    CAS  Google Scholar 

  14. L. Aditya, R. Meena, M. Ahlawat, P. Pareek, P. Kulshreshtha, R.S. Shinde, Indian Part. Accel. conf. 1194, 1005–1007 (2018)

    Google Scholar 

  15. Z. Çaldıran, J. Alloy. Compd. 816, 152601 (2020)

    Google Scholar 

  16. J. Jang, J. Song, S.S. Lee, S. Jeong, B.J. Lee, S. Kim, Mater. Sci. Semicond. Process. 131, 105882 (2021)

    CAS  Google Scholar 

  17. Ö. Sevgili, İ Orak, Microelectron. Reliabil. 117, 114040 (2021)

    CAS  Google Scholar 

  18. E. Marıl, Phys. B. Phys. Condens. Matter. 604, 412732 (2021)

    Google Scholar 

  19. Y. Shen, Q, Feng, K. Zhang, Z. Hu, G. Yan, Y. Cai, W. Mu, Z. Jia, C. Zhang, H. Zhou, J. Zhang, X. Lian, Z. Lai, Y. Huo, Supperlat. Microstruc. 133, 106179 (2019). https://doi.org/10.1016/j.spmi.2019.106179

    Article  CAS  Google Scholar 

  20. L. Sirdeshmukh, K.K. Kumar, S.L. Laxman, A.R. Krishna, G. Sathaıah, Bull. Mater. Sci. 21(3), 219–226 (1998)

    CAS  Google Scholar 

  21. E. Daş, Ü. İncekara, Ş Aydoğan, Opt. Mater. 119, 11380 (2021)

    Google Scholar 

  22. H. Ertap, H. Kaçuş, Ş Aydoğan, M. Karabulut, Sens. Actuators Phys. 315, 112264 (2020)

    CAS  Google Scholar 

  23. P.R.S. Reddy, V. Janardhanam, K.H. Shim, S.N. Lee, A.A. Kumar, V.R. Reddy, C.J. Choi, Thin Solid Films 713, 138343 (2020)

    Google Scholar 

  24. Z. Orhan, A. Taşher, B. Güzeldir, M. Sağlam, Mater. Today Proc. 46, 6924–6928 (2021)

    CAS  Google Scholar 

  25. M. Garg, A. Kumar, H. Sun, C.H. Liao, X. Li, R. Singh, J. Alloy. Compd. 806, 852–857 (2019)

    CAS  Google Scholar 

  26. A.A. Kumar, L.D. Rao, V.R. Reddy, C.J. Choi, Curr. Appl. Phys. 13, 975–980 (2013)

    Google Scholar 

  27. Ö.F. Yüksel, N. Tuğluoğlu, F. Çalışkan, M. Yıldırım, Mater. Today Proc. 3, 1271–1276 (2016)

    Google Scholar 

  28. N. Hamdaoui, R. Ajjel, B. Salem, M. Gendry, Distribution of barrier heights in metal/n-InAlAs Schottkydiodes from current–voltage–temperature measurements. Mater. Sci. Semicond. Process. 26, 431–437 (2014)

    CAS  Google Scholar 

  29. A.R. Deniz, J. Alloy. Compd. 888, 161523 (2021)

    CAS  Google Scholar 

  30. Ç.S. Güçlü, A.F. Özdemir, A. Karabulut, A. Kökçe, Ş Altındal, Mater. Sci. Semicond. Process. 89, 26–31 (2019)

    Google Scholar 

  31. Ö.F. Yüksel, Phys. B 404, 1993–1997 (2009)

    Google Scholar 

  32. A. Akkaya, T. Karaaslan, M. Dede, H. Çetin, E. Ayyıldız, Thin Solid Films 564, 367–374 (2014)

    CAS  Google Scholar 

  33. H. Altan, M. Özer, H. Ezgin, Superlattices Microstruct. 146, 106658 (2020)

    CAS  Google Scholar 

  34. J.H. Werner, H.H. Gütter, J. Appl. Phys. 69(3), 1522–1532 (1991)

    CAS  Google Scholar 

  35. J. Chen, Q. Wang, J. Lv, H. Tang, X. Li, J. Alloy. Compd. 649, 1220–1225 (2015)

    CAS  Google Scholar 

  36. Z. Khurelbaatar, M.S. Kang, K.H. Shim, H.J. Yun, J. Lee, H. Hong, S.Y. Chang, S.N. Lee, C.J. Choi, J. Alloy. Compd. 650, 658–663 (2015)

    CAS  Google Scholar 

  37. D. Hamri, A. Teffahi, A. Djeghlouf, A. Saidane, A. Mesli, J. Alloy. Compd. 763, 173–179 (2018)

    CAS  Google Scholar 

  38. S. Zeyrek, E. Acaroğlu, Ş Altındal, S. Birdoğan, M.M. Bülbül, Curr. Appl. Phys. 13, 1225–1230 (2013)

    Google Scholar 

  39. S. Demirezen, E. Özavcı, Ş Altındal, Mater. Sci. Semicond. Process. 23, 1–6 (2014)

    CAS  Google Scholar 

  40. W.B. Bouiadjra, M.A. Kadaoui, A. Saidane, M. Henini, M. Shafi, Mater. Sci. Semicond. Process. 22, 92–100 (2014)

    Google Scholar 

  41. M. Gülnahar, Superlattices. Microstruct. 76, 394–412 (2014)

    Google Scholar 

  42. J. Osvald, J. Kuzmik, G. Konstandinitis, P. Lobatka, A. Georgakilas, Microelectron. Eng. 81, 181–187 (2005)

    CAS  Google Scholar 

  43. Y.M. Reddy, M.K. Nagaraj, M.S. Pratap Reddy, J.H. Lee, V. Rajagopal Reddy, Braz. J. Phys. 43, 13–21 (2013)

    Google Scholar 

  44. M. Coşkun, O. Polat, D. Sobola, M. Konecny, F.M. Coşkun, Z. Durmuş, M. Çağlar, A.K. Öcal, A. Türüt, J. Mater. Sci.: Mater. Electron. 31, 15407–15421 (2020)

    Google Scholar 

  45. S. Asubay, A. Türüt, Austral. J. Electr. Electron. Eng. 17, 278–285 (2020)

    Google Scholar 

  46. N.M. Yahya, K.K.K. Koziol, M.K.B. Mansor, Defct Diffus. Forum 283–286, 406–412 (2009). https://doi.org/10.4028/www.scientific.net/DDF.283-286.406

    Article  Google Scholar 

  47. Ç.Ş Güçlü, A.F. Özdemir, D.A. Aldemir, Ş Altındal, J. Mater. Sci.: Mater. Electron. 32, 5624–5634 (2021)

    Google Scholar 

  48. O. Çiçek, Ş Altındal, Y. Azizian-Kalandaragh, IEEE Sens. J. 20, 14081–14089 (2020)

    Google Scholar 

  49. A. Yeşildağ, M. Erdoğan, Ö. Sevgili, Z. Çaldıran, İ Orak, J. Electron. Mater. 50, 6448–6458 (2021)

    Google Scholar 

Download references

Funding

This study was financed from Hakkari University Scientific Research Projects budget numbered “FM18BAP6”. The budget of this project is approximately 15000 TL.

Author information

Authors and Affiliations

Authors

Contributions

In this study, the fabrication process of the diode, taking electrical measurements and analyzing these measurements were carried out Assistance Prof. Dr. ARD and Assistance Prof. Dr. ZÇ.

Corresponding author

Correspondence to Ali Rıza Deniz.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deniz, A.R., Çaldıran, Z. Heterojunction diode application of yttrium ıron oxide (Y3Fe5O12). J Mater Sci: Mater Electron 33, 5233–5243 (2022). https://doi.org/10.1007/s10854-022-07712-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07712-0

Navigation